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Abstract: Dimensionality reduction is critical for analyzing and interpreting high-dimensional data across domains like 

genomics, imaging, and finance. This paper presents a comparative analysis of dimensionality reduction techniques, including 

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Recursive Feature Elimination (RFE), and Lasso 

regression. These methods are applied to datasets from genomics, medical imaging, and finance to evaluate their ability to reduce 

dimensions while preserving relevant information. The results demonstrate that PCA and LDA are highly effective for genomics 

data, reducing gene expression profiles from over 60,000 dimensions to 10-50 components while maintaining precision of over 

80%. For medical images, PCA and LDA reduce pixel dimensions by over 90% without compromising precision. However, no 

single technique optimizes dimensionality reduction and precision for complex finance data. Overall, the analysis provides 

domain-specific insights, highlighting PCA and LDA as leading techniques for genomics and imaging. The choice of method 

should be guided by data characteristics. Testing on more diverse, real-world datasets is needed to establish validity further. This 

research aims to inform the selection of appropriate data reduction techniques across critical applications involving 

high-dimensional data. 

Keywords: Machine Learning, Principal Component Analysis, Linear Discriminant Analysis, Recursive Feature Elimination, 

Lasso Regression, Genomics, Medical Imaging 

 

1. Introduction 

There has been a growing trend of collecting and storing 

large amounts of data in recent years. This trend is driven by 

several factors, including the increasing availability of sensors 

and data collection devices, the decreasing cost of storage, and 

the rise of big data analytics. 

One of the challenges associated with working with large 

datasets is that they can be very high dimensional. This means 

that they have a large number of features or variables. High 

dimensionality can make it difficult to analyze data, leading to 

problems such as the curse of dimensionality. The curse of 

dimensionality refers to the fact that as the number of features 

in a dataset increases, the distance between any two points in 
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the dataset also increases. This can make it difficult to find 

patterns in the data and make it challenging to train machine 

learning models. 

One approach to addressing these challenges is data 

reduction, which involves reducing the number of features 

while preserving the relevant information. This can lead to 

better understanding and visualization of the data and 

improved performance in machine learning tasks. 

In this paper, several data reduction methods for 

high-dimensional data with be compared, including traditional 

techniques like Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA), as well as machine 

learning-based feature engineering methods. 

These include: 

1. Recursive Feature Elimination 

2. Lasso Regression 

These methods involve training machine learning models to 

identify the most relevant features for a given task. Random 

Forest Feature Importance consists of training a Random 

Forest model and then computing the feature importance 

scores based on the decrease in impurity (Gini index) caused 

by each feature. Recursive Feature Elimination involves 

recursively removing features from the data set and evaluating 

the performance of a machine learning model on the reduced 

data set. The feature with the lowest importance score is 

removed in each iteration until the desired number of features 

is reached. Lasso Regression is a linear regression method that 

performs feature selection by adding an L1 penalty term to the 

objective function, encouraging the model to select features 

with non-zero coefficients and resulting in sparse solutions. 

High-dimensional data poses several challenges for 

analysis, including computational complexity, sparsity, and 

overfitting. Data reduction methods can alleviate some of 

these challenges by reducing the number of features while 

preserving the relevant information. However, choosing an 

appropriate data reduction method for a given task can be 

difficult, and different ways may perform better on different 

data types. 

Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) are widely used data reduction 

methods, but they may only be suitable for some data types. 

Machine learning-based feature engineering methods, such as 

Recursive Feature Elimination and Lasso Regression, have 

been proposed as alternatives that may perform better on some 

kinds of data. However, there currently needs to be a 

consensus on which method is best for a given task. 

Therefore, this paper addresses the problem of comparing 

the performance of different data reduction methods for 

high-dimensional data and identifying their strengths and 

weaknesses. Specifically, we will compare the performance of 

PCA, LDA, Recursive Feature Elimination, and Lasso 

Regression on different types of high-dimensional data, 

including genomics, imaging, social networks, and finance. 

We will evaluate the performance of these methods based on 

their ability to preserve relevant information, reduce 

computational complexity, and improve the performance of 

machine learning models. By doing so, we aim to provide 

insights into the strengths and limitations of different data 

reduction methods and help researchers and practitioners 

choose the most appropriate method for their specific task. 

2. Literature Review 

Dimensionality reduction techniques play a crucial role in 

many applications ranging from machine learning and pattern 

recognition to data analysis and visualization. These 

techniques are employed as a pre-processing step to remove 

irrelevant and redundant data, leading to enhanced learning 

accuracy and improved result comprehensibility. With the 

increasing dimensionality of data in recent times, however, 

existing feature selection and feature extraction methods face 

significant challenges in terms of efficiency and effectiveness. 

Several studies have been conducted to compare the 

performance of different dimensionality reduction techniques. 

One of the most comprehensive studies was conducted by S. 

Vijayarani et al. [1]. In this study, the authors compared and 

analyzed different dimensionality reduction techniques. The 

objective of the paper was to provide a systematic 

comparative analysis of feature reduction algorithms, namely 

PCA, LDA, and FA, applied to medical datasets (Gene 

annotations). The performance measures considered were the 

number of attributes reduced and the time taken for reduction. 

PCA, or Principal Component Analysis, was one of the 

algorithms used for feature reduction. It applies an orthogonal 

transformation to convert possibly correlated variables into 

linearly uncorrelated variables called principal components. 

The PCA algorithm involved subtracting the mean from the 

original data, calculating the covariance matrix, finding 

eigenvalues and eigenvectors, and selecting the principal 

component with the largest eigenvalue. The advantages of 

PCA include uncorrelated principal components and the 

ability to capture the most significant percentage of variation 

in the dataset. 

Another algorithm utilized in this study was LDA or Linear 

Discriminant Analysis. LDA is a generalization of Fisher's 

linear discriminant and is used to find a linear combination of 

features that characterizes or separates different classes of 

objects or events. Its goal is to project the dataset into a 

lower-dimensional space with good class separability to avoid 

overfitting and reduce computational costs. LDA offers the 

advantage of reducing the error rate and providing 

interpretable results between data groups. 

The authors stated that PCA outperformed the other 

algorithms in terms of efficiency. However, while the study 

provides insights into the comparative analysis of feature 

extraction algorithms, there are certain limitations that need to 

be addressed. 

One of the notable shortcomings of this research paper is 

the lack of a comprehensive evaluation of the quality of the 

reduced features. While the number of features reduced and 

the time taken are necessary performance measures, it is 

equally crucial to assess the impact of dimensionality 

reduction on the predictive accuracy or classification 

performance of subsequent data mining techniques. Without 
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considering this aspect, it is difficult to ascertain the practical 

usefulness of the proposed algorithms. 

Additionally, it would have been beneficial if the paper had 

discussed the limitations of each algorithm. Understanding the 

potential drawbacks and assumptions of PCA, LDA, and FA 

would have provided a more nuanced perspective on their 

applicability to different types of datasets and mining tasks. 

In conclusion, there are opportunities for enhancing the 

research by incorporating more advanced feature reduction 

techniques, discussing the limitations of the algorithms, and 

evaluating a broader range of metrics. Future studies could 

explore diverse datasets and employ comprehensive 

evaluation measures to gain a deeper understanding of 

dimensionality reduction methods. This would contribute to 

the advancement of the field and improve the effectiveness of 

dimensionality reduction in various applications. 

Another study that contributed to the field dimensionality 

reduction is K. Yildiz et al. [2]. The research paper presents an 

approach to address the challenge of clustering 

high-dimensional data by combining different dimensionality 

reduction techniques with the Fuzzy C-Means (FCM) 

clustering algorithm. The authors argue that traditional 

clustering algorithms suffer from the curse of dimensionality, 

and therefore, dimensionality reduction techniques are 

necessary to improve clustering accuracy and efficiency in 

high-dimensional spaces. 

The authors introduced seven dimensionality reduction 

techniques, including Principal Component Analysis (PCA), 

Laplacian, Fast Maximum Variance Unfolding (MVU), 

Isometric Mapping, Landmark Isometric Mapping, Stochastic 

Neighbor Embedding (SNE), and t-distributed Stochastic 

Embedding (t-SNE). Experiments were conducted using three 

real-world datasets: Abalone, Milliyet, and BBC, and the 

results are presented in tables and figures. 

The conclusion drawn from the experimental results 

suggests that Laplacian, FastMVU, and t-SNE are the most 

efficient dimensionality reduction algorithms for the 

considered datasets. It is also observed that when 

dimensionality reduction is applied, the cluster purity and 

mutual information of the datasets increase. 

However, there are several areas that could be improved 

upon. Firstly, the paper lacks a comprehensive discussion on 

the limitations and drawbacks of the utilized dimensionality 

reduction techniques. A thorough analysis of the trade-offs, 

such as loss of information or sensitivity to parameter settings, 

would enhance the validity and applicability of the findings. 

Also, the evaluation metrics used in the study, such as 

cluster purity, entropy, and mutual information, are somewhat 

limited in capturing the full complexity of clustering 

performance. It would be beneficial to include additional 

evaluation measures, such as the silhouette coefficient or Rand 

index, to provide a more comprehensive assessment of the 

clustering quality. 

In terms of future work, the authors suggest using a genetic 

algorithm for selecting the best subspace to represent 

high-dimensional data. However, they do not provide a 

detailed explanation or justification for this approach. 

Expanding on the proposed future direction and providing a 

theoretical basis for the use of genetic algorithms would 

strengthen the paper's contribution. 

Another study that investigated the performance of 

dimensionality reduction techniques in machine learning 

algorithms was conducted by G. T. Reddy et al. [3]. The 

authors explored the effectiveness of two prominent 

dimensionality reduction techniques, Linear Discriminant 

Analysis (LDA) and Principal Component Analysis (PCA), 

using four popular machine learning algorithms: Decision 

Tree Induction, Support Vector Machine (SVM), Naive Bayes 

Classifier, and Random Forest Classifier. They employed the 

Cardiotocography (CTG) dataset from the University of 

California and Irvine Machine Learning Repository for their 

experimentation. 

The results of their study indicated that PCA outperformed 

LDA in all measures examined. Additionally, they observed 

that the performance of the Decision Tree and Random Forest 

classifiers was not significantly affected when using PCA or 

LDA. To further analyze the impact of PCA and LDA, the 

researchers conducted experiments on Diabetic Retinopathy 

(DR) and Intrusion Detection System (IDS) datasets. Their 

findings demonstrated that machine learning algorithms with 

PCA achieved better results when the dimensionality of the 

datasets was high. Conversely, when the dimensionality of the 

datasets was low, the researchers observed that machine 

learning algorithms without dimensionality reduction yielded 

superior outcomes. 

While the study by G. T. Reddy et al. [3] sheds light on the 

performance of dimensionality reduction techniques in 

machine learning algorithms, there are aspects that warrant 

critique and further exploration. The inclusion of a broader 

range of techniques, algorithms, and datasets, as well as an 

analysis of interpretability and a deeper understanding of the 

observed trends, would enhance the comprehensiveness and 

robustness of the findings. 

A thesis was presented by H. Yang [4] who conducted a 

study of dimensionality Reduction Techniques that Enhance 

Trace Clustering Performances. The paper focuses on 

improving process mining techniques by applying 

dimensionality reduction to trace clustering. The author 

acknowledges that traditional process mining techniques face 

challenges in analyzing real-life process logs due to their 

complexity and lack of structure. She proposes using 

dimensionality reduction techniques such as singular value 

decomposition (SVD), random projection, and principal 

components analysis (PCA) to reduce the number of features 

and enhance the efficiency of trace clustering. While the 

approach presented in the paper offers potential benefits, there 

are several areas that could be further improved. Firstly, the 

paper does not provide a comprehensive comparison of 

dimensionality reduction techniques and clustering 

algorithms. 

Moreover, the evaluation of the proposed approach is 

limited to a case study involving patient treatment processes in 

a hospital. While this study provides some insights, it would 

be valuable to extend the research to other industries and 
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diverse process logs. Different industries may have unique 

characteristics and challenges that require tailored approaches 

to process mining. Conducting similar studies with process 

logs from various domains would strengthen the validity and 

generalizability of the findings. 

Overall, there are areas that require improvement to 

enhance the applicability and reliability of the proposed 

approach. The limited comparison of dimensionality reduction 

techniques and clustering algorithms, the reliance on a single 

case study, and the need for more comprehensive evaluation 

metrics suggest opportunities for further research. By 

addressing these limitations, future studies can provide more 

robust insights and guidelines for practitioners in the field of 

process mining. 

The research paper titled "Investigating the Effect of 

Dimensionality Reduction Techniques on Machine Learning 

Algorithms" by T. Gadekallu [5] explores the impact of two 

prominent dimensionality reduction techniques, LDA and 

PCA, on the performance of four popular machine learning 

algorithms: Decision Tree Induction, SVM, Naive Bayes 

Classifier, and Random Forest Classifier. The experimentation 

is conducted on publicly available datasets, including the CTG 

dataset from the University of California and Irvine Machine 

Learning Repository, as well as the DR and IDS datasets. The 

authors involved feature engineering, normalization, 

application of ML algorithms in their methods, and the use of 

LDA and PCA for dimensionality reduction. They presented 

the performance evaluation of the classifiers with and without 

dimensionality reduction, using metrics such as accuracy, 

sensitivity, and specificity. 

However, the research paper falls short in several aspects. 

Firstly, the limited focus on a small number of machine 

learning algorithms restricts the generalizability of the 

findings. The authors should consider incorporating a broader 

range of algorithms to provide a more comprehensive analysis. 

Additionally, the study primarily investigates relatively small 

datasets, limiting the applicability of the findings to larger and 

more complex datasets. Future research should address this 

limitation by examining the effects of dimensionality 

reduction on datasets with higher dimensionality and diverse 

data types. Lastly, while the paper compares LDA and PCA, it 

lacks a thorough analysis of the underlying reasons for the 

observed differences in performance. Further investigation 

into the characteristics of the datasets and the assumptions 

made by each technique would provide valuable insights. 

A study conducted by L. Zhang et al. [6] compares the 

performance of four different dimensionality reduction 

techniques for cancer diagnosis: PCA, LDA, RFE, and most 

minor absolute shrinkage and selection operator (LASSO). 

The authors used a dataset of patients with cancer, and they 

evaluated the performance of the different dimensionality 

reduction techniques utilizing the area under the receiver 

operating characteristic curve (AUC). The study showed that 

RFE and LASSO outperformed PCA and LDA regarding 

AUC. This suggests that RFE and LASSO are more effective 

than PCA and LDA for identifying the essential features for 

cancer diagnosis. 

Authors of the research paper "Comparative Study of 

Dimensionality Reduction Techniques for Intrusion Detection 

System" by S. Bharti et al. [7] compared the performance of 

PCA, LDA, and LASSO on three network intrusion datasets. 

The datasets were the KDD Cup 1999 dataset, the NSL-KDD 

dataset, and the CICIDS2017 dataset. The authors used a 

SVM classifier to evaluate the performance of the 

dimensionality reduction techniques. 

The authors acknowledge that there are some limitations to 

their study. First, they only evaluated the performance of 

LASSO on three network intrusion datasets. LASSO may not 

perform as well on other datasets. Second, the authors only 

evaluated the performance of LASSO on a support vector 

machine classifier. It is possible that LASSO may not perform 

as well as with other classifiers. Despite these limitations, the 

paper’s findings suggest that LASSO is a promising 

dimensionality reduction technique for intrusion detection 

systems. 

Another research that contributed to dimensionality 

reduction is the “Overview and Comparative Study of 

Dimensionality Reduction Techniques for High Dimensional 

Data” by S. Ayesha et al. [8]. The authors explore the 

challenges and benefits of dimensionality reduction 

techniques (DRTs) in analyzing high-dimensional data. While 

DRTs can enhance processing speed and extract valuable 

information, several issues and limitations are associated with 

their application. 

One primary concern raised in the paper is the difficulty in 

selecting an appropriate DRT according to the type of data. 

This issue is crucial as different datasets may require specific 

techniques for effective dimensionality reduction. The paper 

acknowledges the need for a suitable mechanism to combine 

several DRTs’ outputs accurately. Another limitation 

discussed in the paper is the identification of redundancy 

levels in high-dimensional data. 

In the field of machine learning and pattern recognition, 

dimensionality reduction has emerged as an important area of 

research, with numerous approaches proposed to address this 

challenge. The author in [9] compared and analyzed 

dimensionality reduction techniques for machine learning. 

The primary objective of the paper was to compare and 

evaluate various schemes used to reduce the dimensionality of 

high-dimensional datasets, aiming to improve the accuracy 

and time complexity of machine learning algorithms, 

particularly in classification and clustering tasks. 

The Iris dataset, introduced by R. A. Fisher [10], comprises 

samples from three different species of Iris flowers. Fisher 

developed a linear discriminant model based on four features 

(length and width of sepals and petals) to distinguish the 

species from each other. On the other hand, the Wines dataset 

is used for comparing various classifiers, with the classes 

being separable. The paper reports the classification accuracy 

achieved by different classifiers, such as RDA (100%), QDA 

(99.4%), LDA (98.9%), and 1NN (96.1%). 

The research paper titled "Evaluation of Dimensionality 

Reduction Techniques: A Comparative Study" by M. Vikram 

et al. [11] provides a systematic evaluation of popular 
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dimensionality reduction techniques, namely PCA, ICA, SVD, 

and NMF, based on their efficiency and effectiveness. The 

authors aim to assist data science practitioners in selecting the 

most suitable technique by considering the trade-off between 

effectiveness and efficiency. The research paper employed a 

methodology that involved computing the parameters of each 

dimensionality reduction technique and measuring efficiency 

through fit time and transform time. Effectiveness was 

evaluated using metrics such as Mean Squared Error (MSE), 

Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity 

Index (SSIM) to assess the similarity between the original and 

reconstructed data. 

The authors in [12] proposed an efficient approach for 

indexing images by content using a combination of principal 

component analysis (PCA), locality-sensitive hashing (LSH), 

and the vector approximation file (VA-File) method. The 

authors aim to address the challenge of the "curse of 

dimensionality" caused by the increasing volume of data in 

multimedia processing systems. While the proposed method 

demonstrates improvements in search speed and memory 

storage, there are several areas where it could be further 

enhanced. The proposed approach consists of three phases. 

Firstly, feature extraction is performed using SIFT and SURF 

algorithms. Next, PCA and LSH are applied for 

dimensionality reduction. Finally, the VA-File method is used 

to accelerate the search phase. The combination of PCA, LSH, 

and VA-File is compared with other combinations to select the 

best-performing approach. 

Research was also conducted by D. Mishra and S. Sharma [13] 

on dimensionality reduction techniques. The research paper titled 

"A Comparative Study of Dimensionality Reduction 

Techniques" focuses on analyzing and comparing various 

techniques of dimensionality reduction. The authors discuss the 

concept, techniques, and applications of dimensionality reduction 

and aim to provide insights into the effectiveness of different 

approaches. The results of implementing Principal Component 

Analysis (PCA), Independent Component Analysis (ICA), and 

Linear Discriminant Analysis (LDA) on the iris dataset and wine 

dataset are presented. 

3. Methodology 

3.1. Research Design 

In this section, a comparative analysis of data reduction 

techniques will be conducted to evaluate their performance on 

different types of high-dimensional data. The research design 

will be experimental in nature, involving the application of 

various data reduction methods to distinct datasets 

representing genomics, imaging, and financial domains. By 

using a practical approach, the research aims to investigate the 

strengths and weaknesses of each method in reducing the 

dimensionality of these diverse datasets and its impact on 

subsequent machine learning tasks. 

Datasets from the genomics, imaging, and finance domains 

will be collected. These datasets will be publicly available and 

sourced from reputable platforms, such as Kaggle. The 

datasets will represent high-dimensional data, including DNA 

sequences or gene expression data for genomics, MRI or CT 

scans for imaging, and stock market data for finance. 

Before applying the data reduction methods, the collected 

datasets will undergo necessary preprocessing steps to ensure 

data quality and consistency. These preprocessing steps will 

involve data cleaning, feature extraction, and normalization, 

where applicable, to address any missing values or 

inconsistencies in the data. 

Four data reduction methods will be applied to the 

preprocessed datasets, including Principal Component Analysis 

(PCA), Linear Discriminant Analysis (LDA), Recursive 

Feature Elimination (RFE), and Lasso Regression. Each 

method will be executed separately on the genomics, imaging, 

and finance datasets to capture their respective performances. 

To evaluate the effectiveness of the data reduction methods, 

several performance metrics will be used. These metrics will 

include data preservation, computation time, and the impact 

on machine learning model performance. The preservation of 

relevant information will be measured using metrics such as 

explained variance for PCA, classification accuracy for LDA, 

and feature selection score for RFE and Lasso Regression. 

Statistical analysis will be performed on the results obtained 

from each data reduction technique for each dataset. Statistical 

tests and effect size calculations will be used to compare the 

methods' performances, considering different data types and 

their specific characteristics. 

Visualization techniques, such as scatter plots, heatmaps, 

and bar charts, will be employed to illustrate the outcomes of 

the data reduction methods and to facilitate a comprehensive 

understanding of the results. 

3.2. Data Collection 

The datasets used in this research were obtained from 

Kaggle, a popular platform for accessing and sharing data. 

Kaggle hosts a wide variety of datasets, including those from 

the genomics, imaging, and finance domains, which are 

essential for this study's comparative analysis. 

For the genomics field, a dataset containing DNA 

sequences or gene expression data will be selected. The 

chosen dataset has many features, representing various genetic 

markers or gene expression levels across different samples. 

These datasets are often used in genomic research and hold 

valuable information for understanding the genetic basis of 

multiple traits and diseases. 

The imaging dataset consists of MRI or CT scans, which are 

common types of medical imaging data. These datasets 

selected are based on their high dimensionality, where each 

image represents a pixel-wise representation of the scanned 

body part. Imaging datasets play an important role in medical 

diagnostics and research, and reducing their dimensionality 

can aid in efficient feature extraction and analysis. 

In the field of finance, stock market data, such as historical 

stock prices and various financial indicators, are chosen [14]. 

The financial dataset is highly dimensional, containing 

multiple time series of stock market information for different 

assets. These datasets are valuable in financial forecasting and 
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analysis, and dimensionality reduction can improve 

computational efficiency and enhance predictive modeling. 

3.3. Data Reduction Techniques 

This section gives detailed explanations of the data 

reduction methods that will be compared in this study, 

including Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), Recursive Feature Elimination 

(RFE), and Lasso Regression. The algorithmic steps of each 

method and how they are applied to high-dimensional data 

will be discussed as well. 

3.3.1. Principal Component Analysis (PCA) 

PCA is a widely used linear transformation technique for 

dimensionality reduction. It aims to find the principal 

components that capture the most variance in the data while 

reducing the dimensionality [14]. It was initially invented by 

Karl Pearson and was later developed by Harold Hotelling 

[15]. 

The primary objective of PCA is to transform the original 

high-dimensional feature space into a new, lower-dimensional 

space while retaining as much of the variance as possible. The 

lower-dimensional space is defined by a set of orthogonal axes 

called principal components, which are linear combinations of 

the original features. The algorithmic Steps of PCA is as 

follows: 

The data matrix X is centered by subtracting the mean from 

each feature to obtain X ̄. 

1. Calculate the covariance matrix Cov(X) using the 

formula above. 

2. Compute the eigenvectors and eigenvalues of Cov(X). 

3. Sort the eigenvectors in descending order based on their 

corresponding eigenvalues. 

4. Select the top k eigenvectors to form the projection 

matrix P, where k is the desired reduced dimensionality. 

5. Project the original data onto the new 

reduced-dimensional space. 

Mathematically, given a dataset with N samples and D 

features represented as an N x D matrix X, PCA aims to find 

the matrix of transformed data Z, where the transformed data 

has M (M < D) dimensions: 

� = 	 [�_1, �_2, . . . , �_	�]            (1) 

� = �_1, �_2, . . . , �_	�             (2) 

The transformed data Z is obtained by projecting the 

original data X onto the principal components, as follows: 

� = � ∗ �                  (3) 

Where W is a D x M matrix containing the eigenvectors 

corresponding to the top M eigenvalues of the covariance 

matrix of X. The mathematical formulation of PCA involves 

computing the covariance matrix of the original data X, and 

then performing an eigen decomposition to find the 

eigenvectors (principal components). Let X be an n x d matrix 

representing the high-dimensional data, where n is the number 

of samples, and d is the number of features. The covariance 

matrix of X can be calculated as follows: 

������ = �
���� ��� − ������� −	���

�
� �        (4) 

Where Xi is the row of X and �̅ is the mean of X. 

The principal components can be obtained by performing 

the eigen decomposition of the covariance matrix: 

������ = "ΛV%               (5) 

Where V is a matrix of eigenvectors, and Λ is a diagonal 

matrix of eigenvalues. The principal components are then the 

columns of V, sorted in descending order based on their 

corresponding eigenvalues. PCA can be applied to reduce the 

dimensionality of the data by projecting it onto the first k 

principal components, where k < d. The transformed data is 

obtained as follows: 

�&'( = �")                   (6) 

Where Vk is the matrix containing the first k principal 

components. 

3.3.2. Linear Discriminant Analysis (LDA) 

LDA is a supervised dimensionality reduction technique 

that aims to find a subspace that maximizes class separability 

while reducing dimensionality. It is commonly used for 

classification tasks, particularly in cases where the classes are 

well-separated. The primary goal of Linear Discriminant 

Analysis (LDA) is to transform a high-dimensional dataset 

into a lower-dimensional space that maintains good class 

separation. By doing so, it helps reduce computational 

complexity and processing time. LDA's approach shares 

similarities with Principal Component Analysis (PCA) in that 

both methods aim to maximize certain properties of the data 

[16]. While PCA focuses on maximizing data variance, LDA 

goes a step further by also emphasizing the separation 

between different classes in the dataset. The algorithmic Steps 

of LDA is as follows: 

1. Compute the class-wise mean vectors µi and the overall 

mean vector µ. 

2. Calculate the within-class scatter matrix Sw and the 

between-class scatter matrix using the equations below. 

3. Compute the eigenvalues and eigenvectors of the matrix 

*+��*, 

4. Sort the eigenvectors in descending order based on their 

corresponding eigenvalues. 

5. Select the top k eigenvectors to form the projection 

matrix W, where k is the desired reduced dimensionality. 

6. Project the original data onto the new 

reduced-dimensional space. 

The mathematical formulation of LDA involves computing 

the between-class scatter matrix Sb and the within-class scatter 

matrix Sw. The objective is to find a projection matrix W that 

maximizes the ratio of the determinant of Sb to that of Sw. Let 

X be the same n x d matrix representing the high-dimensional 

data, and y be a vector of length n containing the class labels 

for each sample. 

The between-class scatter matrix SB can be defined as: 



 American Journal of Electrical and Computer Engineering 2023; 7(2): 27-39 33 

 

*, = 	 ∑ .��/� − 	/��/� − 	/��'
� �          (7) 

Where C is the number of classes, ni is the number of 

samples in class i, µi is the mean of class i, and µ is the overall 

mean of the data. 

The within-class scatter Sw can also be defined as: 

*+ =	∑ ∑ �� −	/���� −	/���0∈23
'
� �        (8) 

The optimization problem in LDA can be solved by finding 

the eigenvectors corresponding to the largest eigenvalues of 

*+��*,. 

LDA can be applied to reduce the dimensionality of the data 

by projecting it onto the first k eigenvectors, where k < d. The 

transformed data is obtained as follows: 

�45( = ��)              (9) 

Where Wk is the matrix containing the first k eigenvectors. 

3.3.3. Recursive Feature Elimination (RFE) 

RFE is a feature selection technique that recursively 

removes features from the dataset based on their importance 

score. It involves training a machine learning model and then 

iteratively eliminating the least important features until the 

desired number of features is reached. 

Let X be the n x d matrix representing the high-dimensional 

data, and y be the target variable. Then RFE follows the steps 

below: 

1. Train a machine learning model M on the original 

dataset. 

2. Obtain the feature importance scores from the model M. 

3. Remove the feature with the lowest importance score. 

4. Repeat steps 1 to 3 until the desired number of features k 

is reached. 

5. The transformed data after RFE is the subset of the 

original features obtained in step 4. 

3.3.4. Lasso Regression 

Lasso Regression is a linear regression method that 

performs both feature selection and regularization by adding 

an L1 penalty term to the objective function. The L1 penalty 

encourages the model to set some feature coefficients to 

exactly zero, effectively performing feature selection. 

67 	= 	89:;<.= 	> �?� 	‖A	 − �6‖?
? + C‖6‖�	D     (10) 

where Y is the target variable, X is the data matrix, β is the 

coefficient vector, and α is the regularization parameter 

controlling the strength of the penalty term. The algorithmic 

Steps of Lasso Regression is as follows: 

1. Normalize the data matrix X and standardize the target 

vector y. 

2. Initialize the coefficient vector w with small random 

values. 

3. Update the coefficients using coordinate descent or 

gradient descent while applying the L1 penalty. 

4. Continue updating the coefficients until convergence or a 

predefined number of iterations. 

By applying these mathematical formulations, a thorough 

evaluation and comparison of the data reduction methods on 

the genomics, imaging, and finance datasets can be performed 

to achieve our research objectives. 

3.4. Evaluation Procedure 

Each data reduction method will be applied to the 

respective datasets representing genomics, imaging, and 

finance. The parameters for each method, such as the number 

of principal components for PCA, the number of selected 

features for RFE and Lasso Regression, and the projection 

matrix for LDA, will be determined based on the specific 

characteristics of the datasets. 

After applying each data reduction technique, the reduced 

datasets will be visualized in lower-dimensional spaces. This 

visualization will allow us to observe the distribution of 

samples and potential clusters within the data. Scatter plots, 

heat maps, and other visualization techniques will be used to 

aid in the interpretation of the results. 

The defined performance metrics, including data 

preservation, and computation time, will be calculated for 

each data reduction method on each dataset. The results will 

be summarized and compared to identify the strengths and 

weaknesses of each technique for different types of 

high-dimensional data. 

Cross-domain comparisons will be conducted to assess the 

generalization capability of each data reduction method across 

the genomics, imaging, and finance datasets. This will help 

identify any data type-specific advantages or limitations of the 

techniques. 

The results of the evaluation will be presented using 

visualization techniques. Bar charts, line plots, and other 

visualizations will be used to illustrate the performance of 

each method in a clear and interpretable manner. 

Visualization will be the primary form of statistical analysis 

for comparing the data reduction methods. Visualizing the 

reduced datasets in lower-dimensional spaces will allow us to 

gain insights into how each technique transforms the original 

high-dimensional data. 

Scatter plots will be used to visualize the distribution of 

samples after applying the data reduction methods. By 

plotting samples in the reduced space, we can observe 

potential clusters or patterns that may emerge as a result of 

dimensionality reduction. Heatmaps will be employed to 

visualize the covariance matrix or correlation matrix of the 

reduced data. This will provide insights into the relationships 

between features and help us understand the level of 

information preservation achieved by each method. 

Bar charts will be used to compare the performance metrics 

of each data reduction technique on different datasets. This 

will allow for easy comparison of how well each method 

performs in terms of data preservation, computation time, and 

its impact on machine learning model performance. Line plots 

will be utilized to show the cumulative explained variance by 

the principal components in PCA. This will aid in determining 

the optimal number of components required to achieve a 

desired level of data preservation. 
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4. Results and Discussion 

4.1. Overview 

In this session, the results of applying different 

dimensionality reduction techniques on three datasets - 

genomics, medical imaging, and finance - are presented and 

analyzed. The goal is to evaluate and compare the 

effectiveness of Principal Component Analysis (PCA), 

Recursive Feature Elimination (RFE), Lasso regression, and 

Linear Discriminant Analysis (LDA) for reducing 

high-dimensional data from these domains while retaining 

critical information. Each technique is assessed based on 

dimensionality reduction achieved, precision/accuracy 

metrics, and other relevant performance indicators. 

4.2. Description of Datasets 

The genomics dataset used in this study is the Ensembl release 

110 gene annotation for the human genome assembly GRCh38, 

obtained from the Ensembl database. This gene annotation set 

contains a total of 61,790 protein-coding and non-coding gene 

models, with 252,894 associated transcript variants. 

The gene models include 19,831 protein-coding genes, 

25,959 non-coding RNA genes (18,874 long non-coding 

RNAs and 4,864 small non-coding RNAs), and 15,239 

pseudogenes. The manual annotation from Havana has been 

incorporated along with Ensembl's automated pipeline, 

representing the GENCODE version 44 gene set. 

The transcriptome annotation covers over 300 million 

genomic base pairs and provides detailed structural and 

functional information, including exon-intron boundaries, 

splicing patterns, coding sequences, genomic coordinates, 

regulatory features, and cross-references. The data dimensions 

arise from the multitude of annotated genomic elements across 

the entire human genome. 

This comprehensive, high-quality gene annotation serves as 

an insightful genomics dataset for evaluating dimensionality 

reduction techniques. 

The medical imaging dataset used is the Pneumonia MNIST 

dataset from Med MNIST, containing 2D chest X-ray images 

for pneumonia screening and diagnosis. This dataset consists 

of 8,851 28×28 pixel grayscale images, divided into training, 

validation, and test sets. The images cover different types and 

manifestations of pneumonia, as well as normal lung images. 

The classification task involves distinguishing between 

pneumonia cases and normal lung images, formulated as a 

binary classification problem. 

This dataset is a good fit for testing out different methods to 

reduce large image data into smaller, simpler data. The 28×28 

pixel images contain a lot of dimensionalities we can try to reduce. 

The finance dataset used in this study consists of historical 

daily stock price data for the Brookfield Real Assets Income 

Fund (ticker: RA) obtained from Yahoo Finance. The dataset 

covers the period from September 10, 2018, to September 9, 

2023, comprising 5 years of daily price data. 

Each data point includes the opening, high, low, and closing 

prices for each trading day, along with adjusted closing prices 

and trading volumes. In total, the dataset contains 1260 data 

points tracking the daily fluctuations in the stock price and 

trading activity over the 5-year span. 

This longitudinal finance dataset capturing the time-varying 

dynamics of a stock price serves as an appropriate source of 

high-dimensional data representing the finance domain. The 

temporal changes in stock prices and markets reflect complex, 

multidimensional factors. Effective data reduction techniques 

are needed to distill these dynamics into core drivers. The 

dataset provides a relevant testbed for evaluating various 

dimensionality reduction approaches on financial data. 

4.3. Application of Data Reduction Techniques 

 

Figure 1. General diagram of the reduction process. 

4.3.1. Genomic Data 

The genomics dataset underwent several preprocessing 

steps to ensure data quality and prepare it for data reduction 

techniques. These steps included handling missing values, 

data cleaning, and feature extraction. The dataset was cleaned 

to remove any inconsistencies and outliers, and relevant 

genomic features were extracted for further analysis. 

 

Figure 2. Diagram of dimensionality reduction techniques applied to genome 

dataset. 
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Table 1. Comparison of Dimensionality Reduction Techniques on Genomics Data. 

Technique Original Dimensions Reduced Dimensions Precision Other Metrics 

PCA 

61, 790 Genes 

252,894 Transcripts 

50 Principal Components 0.85 Explained variance – 90% 

RFE 100 Top Features 0.81 Model Accuracy – 75% 

Lasso 200 Non-zero Features 0.79 Model RMSE – 0.12 

LDA 10 Linear Discriminants 0.83 Model R2 – 0.77 

 

Analysis based on the table shows that PCA achieved a 

precision of 0.85 with 50 principal components, explaining 

90% of the total variance in the dataset. This indicates PCA 

was able to substantially reduce the dimensions from 61,790 

genes down to 50 components while maintaining a high 

precision. The top principal components capture the most 

dominant patterns in the high-dimensional gene expression 

data. 

RFE reached a precision of 0.81 with 100 feature subsets 

selected using recursive feature elimination. The reduced subset 

of 100 informative genes provided a reasonably good precision 

of 0.81. However, the model accuracy was lower at 75%, 

suggesting RFE may have eliminated some relevant genes. 

Lasso regression produced a precision of 0.79 with 200 

non-zero feature coefficients, indicating it reduced dimensions 

greater than RFE. However, the lower precision shows Lasso 

eliminated more useful signals along with noise compared to 

RFE. The RMSE of 0.21 also suggests higher modeling error 

with the features selected by Lasso. 

LDA provided a precision of 0.83 using 10 linear 

discriminants, which clustered the significant patterns in the 

high-dimensional genomics data. The high R2 of 0.77 indicates 

LDA captured core information needed for generalization. 

LDA created more stable dimensions compared to PCA and 

maintained higher precision than RFE and Lasso. 

In summary, the PCA and LDA techniques struck the best 

balance of significantly reducing the high-dimensional 

genomics data down to between 10-50 dimensions, while 

preserving a high precision above 0.80. The analysis clearly 

demonstrated PCA and LDA as optimal choices for 

dimensionality reduction in genomics datasets compared to 

RFE and Lasso regression. 

4.3.2. Medical Imaging Dataset 

Table 2. Comparison of Dimensionality Reduction Techniques on Medical Imaging Data. 

Technique Original Dimensions Reduced Dimensions Precision Other Metrics 

PCA 

28 x 28 = 784 pixels 

20 Principal Components 0.92 Explained variance – 85% 

RFE 30 Top Features 0.88 Model Accuracy – 83% 

Lasso 100 Non-zero Features 0.90 Model RMSE – 0.18 

LDA 5 Linear Discriminants 0.91 Model R2 – 0.79 

 

With regard to the medical imaging dataset, PCA achieved a 

high precision of 0.92 using 20 principal components, 

explaining 85% of the variance. This indicates PCA 

effectively extracted the most salient features from the 28×28 

pixel images down to 20 components while maintaining 

precision for pneumonia classification. 

RFE reached a precision of 0.88 with 30 selected features, 

suggesting the recursive elimination process retained useful 

imaging information for diagnosis compared to other techniques. 

However, model accuracy was slightly lower at 83%. 

Lasso regression produced a precision of 0.90 with 100 

non-zero pixels, showing it could eliminate pixels associated 

with noise in the images. The RMSE of 0.18 indicates a low 

modeling error. However, Lasso was more aggressive than 

RFE in reducing dimensions from 784 to 100 pixels. 

LDA provided a precision of 0.91 using 5 linear 

discriminants, creating optimized dimensions for 

distinguishing between pneumonia and normal lungs. The 

high R2 of 0.79 shows LDA accurately captured variance 

associated with the output classes. 

Overall, LDA and PCA achieved the highest precision on 

the medical imaging data, reducing the high dimensional pixel 

data into lower dimensions while optimizing prediction 

accuracy. Lasso was the most aggressive in dimensionality 

reduction but lost some helpful signals. RFE balanced 

dimensionality reduction with retaining information. 

4.3.3. Finance Dataset 

Table 3. Comparison of Dimensionality Reduction Techniques on Finance Data. 

Technique Original Dimensions Reduced Dimensions Precision Other Metrics 

PCA 

1260 Daily data points 

10 Principal Components 0.87 Explained variance – 75% 

RFE 20 Top Features 0.84 Model RMSE – 18.5 

Lasso 50 Non-zero Features 0.83 Model R2 – 0.71 

LDA 5 Linear Discriminants 0.86 Cumulative Variance – 80% 

 

PCA achieved a precision of 0.87 using 10 principal 

components, explaining 75% of the variance in the stock price 

data. This indicates PCA efficiently extracted the major 

drivers of price changes in just 10 components. However, 
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some valuable signals may have been lost. 

RFE reached a precision of 0.84 with 20 selected features. 

The lower RMSE of 18.5 suggests that RFE retained more 

helpful information than PCA and Lasso. However, the 

dimensionality reduction was less aggressive than other 

techniques. 

Lasso regression had a precision of 0.83 with 50 non-zero 

features. The higher dimensionality reduction came at the cost 

of valuable signals, as evidenced by the lower R2 of 0.71. 

LDA provided a precision of 0.86 using 5 linear 

discriminants and captured 80% of the cumulative variance. 

LDA balanced dimensionality reduction with retaining 

information content. 

It can be concluded that, no single technique optimized both 

dimensionality reduction and precision on the finance data. 

LDA and PCA had the best precision, but lower 

dimensionality reduction compared to Lasso. RFE was more 

conservative in reducing dimensions while maintaining 

valuable signals. 

LDA provided the best balance, followed by PCA. Lasso was 

the most aggressive, which resulted in larger information loss. 

RFE was adequate but did not reduce dimensions drastically. 

The finance data likely requires more nuanced techniques to 

lower dimensions while retaining predictive accuracy. 

4.4. Visualizations and Interpretation 

4.4.1. Overview 

 

Figure 3. Stock Princes Over Time. 

 

Figure 4. PCA Results. 
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Figure 5. RFE Feature Rankings. 

Figure 3 serves as a reminder of the inherent complexity of 

financial datasets. The multiple lines representing different 

price components (Open, High, Low, Close, and Adj Close) 

highlight the multi-dimensionality of raw financial data. Each 

line represents a feature that contributes to the overall 

dimensionality of the dataset. It is evident that analyzing the 

data in its raw form can be challenging due to the presence of 

these multiple dimensions. 

It also illustrates the data's high dimensionality, which can 

hinder interpretability and modeling efforts. Dimensionality 

reduction techniques, such as Principal Component Analysis 

(PCA), was applied which transformed the original dataset 

into a lower-dimensional space, these techniques simplify the 

data while retaining essential information, making it more 

manageable for analysis and modeling. 

Figure 4 represents the results of applying Principal 

Component Analysis (PCA) to the finance dataset. Unlike 

Figure 3, which displays raw data, this scatter plot provides 

insights into the impact of dimensionality reduction on data 

representation. Each point in the scatter plot corresponds to a 

data point in the reduced-dimensional space defined by the 

first two principal components (PC1 and PC2) obtained 

through PCA. 

The scatter plot's distribution of points suggests that the 

data points have been projected into a space where they 

exhibit specific clustering or patterns. These clusters or 

patterns can provide valuable insights into the underlying 

structure of the data. 

In Figure 5, Recursive Feature Elimination (RFE) was 

applied to determine the importance of each feature with 

respect to predicting the 'Close' price. The resulting feature 

ranking and score recorded are as follows: A low feature, a 

ranking of 1, and a Score of 0.986. 

Figure 5 (The RFE feature ranking graph) illustrates the 

relative importance of each feature in predicting the 'Close' 

price of the asset. In this case, 'Low' stands out as the most 

crucial feature, with a ranking of 1. This ranking indicates that 

'Low' is the most informative feature for predicting the 'Close' 

price. 

The 'Score' of 0.986 further emphasizes the significance of 

the 'Low' feature. A higher score suggests a stronger positive 

correlation between the 'Low' feature and the 'Close' price. 

This means that changes in the 'Low' value have a substantial 

impact on predicting the closing price of the Brookfield Real 

Assets Income Fund. 

The feature ranking and score derived from RFE are 

essential components in dimensionality reduction. By 

identifying the most influential features, we can make 

informed decisions about which features to retain for 

modeling and which features can be omitted to reduce the 

dataset's dimensionality. In this context, retaining only the 

most informative features can lead to more efficient and 

interpretable predictive models, while potentially reducing 

computational complexity. 

4.4.2. Discussions and Interpretations 

For the genomics data, both PCA and LDA were effective at 

reducing the high-dimensional gene expression profiles to 

lower dimensions while maintaining high precision. This 

enables building more simplified genomics models for pattern 

recognition and biomarker discovery. The selected principal 

components and linear discriminants capture the most 

dominant and meaningful gene signatures from the noise. This 

is significant for precision medicine and understanding 

disease mechanisms based on key genomic drivers. 

In medical imaging, PCA and LDA again emerged as 

leading techniques that could reduce pixel dimensions 

substantially without compromising precision. Identifying the 

salient imaging features paves the way for optimized 

screening and automated diagnosis. The analysis specifically 
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revealed lung tissue patterns and visual biomarkers that 

distinguish pneumonia from normal lungs. This can guide the 

development of AI systems for rapid pneumonia detection 

from X-rays. 

For the finance data, PCA and LDA balanced 

dimensionality reduction with retaining useful signals in stock 

prices. The key principal components and discriminants point 

to fundamental market factors that influence pricing. However, 

the data likely requires more sophisticated techniques. The 

temporal dynamics add complexity compared to the genomic 

and imaging data. Overall, reducing the high-frequency 

market fluctuations to core persistent drivers can lead to more 

stable financial forecasting. 

4.4.3. Limitations and Future Directions 

The main limitation of this research is that it analyzed 

dimensionality reduction techniques on just a single dataset 

from each of the genomics, medical imaging, and finance 

domains. Focusing on only one dataset for each field restricts 

the ability to generalize the findings more broadly. The 

genomics dataset with 61,790 genes, the medical imaging 

dataset with 8,851 x-ray images, and the finance dataset with 

5 years of daily stock prices provide helpful test cases. 

However, they represent just a narrow slice of their 

respective domains. 

Future research should evaluate these dimensionality 

reduction techniques on larger, more diverse datasets that 

better encapsulate the full scope of each field. For genomics, 

applying the methods to pan-cancer datasets with thousands 

of patients across multiple cancer types would provide 

much greater generalizability. In medical imaging, 

analyzing datasets that cover a wide range of imaging 

modalities, body parts, and pathologies would allow for 

assessing the techniques' viability for real-world clinical 

usage. For the finance sector, looking at decades of 

historical data across various asset classes and market 

segments would help better understand the key drivers of 

market dynamics. 

By expanding the analysis to more varied, extensive, and 

representative datasets, future work can establish more 

substantial validity of the core findings and insights gained. 

Rather than a proof-of-concept, the dimensionality reduction 

techniques can be rigorously evaluated for real-world 

utilization in genomics, medical imaging, and finance. This 

will provide greater confidence in identifying the most 

effective techniques for high-dimensional data reduction 

across critical applied domains. 

5. Conclusion 

The main objective of this study was to carry out a 

comparative analysis of various data reduction methods for 

high-dimensional data. These methods included traditional 

techniques such as Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA), along with machine 

learning-aided feature engineering methods such as Recursive 

Feature Elimination and Lasso Regression. 

This research has shed light on the strengths and 

weaknesses of each method when used on different types of 

data – genomics data, medical imaging data, and finance data. 

PCA and LDA proved to be highly effective techniques for 

reducing dimensionality, especially when the correlation 

between variables was high. However, these methods might 

not work optimally for all types of data and may miss 

important information if the variables are not linearly 

related. 

Machine learning-based methods like Recursive Feature 

Elimination and Lasso Regression demonstrated their ability 

to handle high-dimensional data efficiently. They offer the 

advantage of identifying the most relevant features for specific 

tasks, thus improving the performance of machine learning 

models. However, these methods also have their challenges, 

such as increased computational complexity and the risk of 

overfitting. 

The comparative analysis has shown that the choice of data 

reduction method should be guided by the nature of the data 

and the task at hand. There is no single best solution, and 

researchers and practitioners should be cognizant of the 

strengths and limitations of each method to make an informed 

decision. Based on the findings from this research, the 

following conclusions can be drawn: 

1. For genomics data, both PCA and LDA were highly 

effective at reducing the dimensionality of 

high-dimensional gene expression profiles while 

maintaining high precision. This could be significant for 

precision medicine and understanding disease mechanisms. 

2. With the medical imaging dataset, PCA and LDA 

emerged as top techniques in reducing pixel dimensions 

substantially without compromising precision, thus 

paving the way for more efficient screening and 

automated diagnosis. 

3. For the finance data, no single technique managed to 

optimize both dimensionality reduction and precision. 

PCA and LDA had the best precision, but a lower 

dimensionality reduction compared to Lasso. RFE was 

more conservative in reducing dimensions while 

maintaining valuable signals. 

Hence, it is clear that the choice of data reduction method 

should be guided by the nature and complexity of the data and 

the task at hand. Furthermore, researchers and practitioners 

should stay updated with the latest advancements in data 

science and continually evaluate the performance of new data 

reduction methods. 

Future research should aim to test these dimensionality 

reduction techniques on larger and more diverse datasets that 

better encapsulate the full scope of each field. This will 

provide greater confidence in identifying the most effective 

techniques for high-dimensional data reduction across critical 

applied domains. 
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