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Abstract: Two advanced technic appears concerning the digital processing: the detection system RADAR and a 

compression technic named the Compressive Sensing (CS). This modern acquisition technic combined with reconstruction, 

offers multiple advantages. This research explains a new technic of acquisition with compression: the Analog to 

Information Converter (AIC). The standard method uses Analog to Digital converters (ADC). This method named AIC can 

defeat even the Nyquist Shannon criteria, by using advanced transformation. This article shows the application of 

compressed sensing MIMO RADAR. Based on the propriety of the signal, we study criteria of mathematics’ 

compressibility, to the choice of the methods, the two algorithm of reconstruction that we use named Matching Pursuit (MP) 

and Orthogonal Matching Pursuit (OMP). So, we could have compressive sensing with Non-Uniform Sampling that we 

named CS-NUS on this article. Our contribution consists of using detection of the multiple targets combined with the CS. 

For multiple targets, we use the Principal Component Analysis (PCA) to send the signal and recover it. The Signal to Noise 

Ratio (SNR) and Compressive Ratio (CR) permit to conclude that Orthogonal Matching Pursuit offers a best performance 

than Matching Pursuit. The Matching Pursuit algorithm cited previously gives a good time reconstruction processing but not 

offers a good quality of reconstruction. 
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1. Introduction 

The Nyquist Shannon sampling theorem is a general rule 

of sampling for the digital signal processing. In this, the 

small number for the signal processing could be found. 

After new discovery about compression and sparse 

transform like Discrete Cosine Transform (DCT), Discrete 

Fourier Transform (DFT) and Discrete Wavelet Transform 

(DWT), the compressive sensing permit to compress and 

acquire signal simultaneously. These methods could offer 

low sampling than Nyquist theorem. 

2. Signal Radar Processing 

In classic RADAR processing, the received power, target 

distance could be approximated. It is possible to category the 

radar in two radars’s signal pulse type: The modulated pulse 

(pulse compression) and the constant frequency pulse and. 

2.1. Estimation of Received Power 

The main propose of the RADAR processing is to find the 

distance between the target and the radar system. In this, the 

methodology for understanding how working the radar gives 

a good benefit in this article. [1]. 

The equation (1) expresses the power of the reception’s 

signal: 

P� � ���� ��	
��
��� ����
 ����
                                (1) 
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With, ��: gain’s antenna transmission ��: gain’s antenna reception �: Wavelength ��: Power on the receiver ��: Power on the transmitter ��: Distance between the transmitter and the radar ��: Distance between the receiver and the radar 

To find a target, the radar system should consider the 

surface of reflecting effective and the range of the target. The 

quantities of these geometrics patters should be study in the 

system. On MIMO RADAR, the equation (2) expresses the 

conditions of all quantities: 

���� �min� ≤ �	�
	��
 
	�!"#$ �%"&%��' × )


�
���	             (2) 

With, 

Pt: Generator’s power W); 

G: Gain’s antenna; 

+	 (�	,	z): Frequency; 

�	 (-	): Wavelength; 

Rmax: Distance on detection maximum’s range; 

σ: Surface Equivalent of Radar SER; 
Pr
N : Signal to noise ratio; 

4	 (,	5	): Bandwidth’s receiver; 
�T7 + T��: Temperature of noise concerning the receiver’s 

input in Kelvin. 

2.2. Distance’s Target 

The signal like short-transmitted radio pulse goes and 

returns back to the target in the case of a pulse radar. This 

case permit to compute the distance by using pulse radar with 

celerity of propagation c. 

As the distance calculated by radar is like a straight-line, 

the equation (3) expressed this distance between target and 

antenna. 

R = )	9
: 	                                    (3) 

Where: i: time of propagation until the radar’s pulse go 

back the MIMO radar. 

2.3. Constant Frequency Pulse 

In conventional radars, this method is the most used in the 

signal radar. The parameter of pulse could be: rectangular 

shape, frequency, duration. In this, the equation (4) expressed 

the constant-Frequency pulse radar MIMO. 

r�t� = u�t�e�:� =9&>�	                       (4) 

With, u�t� : the transmitted signal with compressed 

envelope. 

This envelope could be expressed by the equation (5). 

u�t� = ?A	if	0 ≤ t ≤ T
0	others                      (5) 

f): carrier frequency’s transmission; 

ϕ: initial phase. 

The manner for choosing the angular ϕ	has	 a	 big	 reason	
for	 well-determine	 the	 code. The initial phase is used for 

the performance of radar system, the countermeasures of 

warfare’s electronic. 

2.4. Compression’s Pulse 

The most of signal processing about the target’s detection 

like sonar, seismic, radar and other system uses the 

compression’s pulse. Indeed, about the radar, the PAPR or 

Peak Average Power Ratio is minimized and SNR (Signal to 

Noise Ratio) is maximized by this method. 

Two modulations methods could be used: frequency and 

phase modulation. 

1. Frequency modulation 

Linear Frequency Modulation (LFM) is the easiest 

methods for this. Taking duration of T-pulse and having a 

range ∆f, the signal varies his carrier frequency linearly. On 

the pulse compression, the main problem is the presence of 

sidelobe due to the compression which could degrade the 

radar’s resolution. The solution of this problem is the 

reduction of this sidelobes by using weighting or filtering. 

2. Phase encoding 

The phase encoding uses the same method of the pulse 

compression [1-3] but duration’s pulse T, should be divided 

into an identical interval’s duration T. At the last, A phase 

value will be associated with each interval. 

The equation (6) expressed the complex envelope having 

the code’s phase: 

r�t� = O
√% ∑ rRSRTO rect U9V�RVO�9W

9W X	                  (6) 

Where: 

rR = eYZ[ and the L: the phase system. 

ψO, … , ψS: the phase code associated with r�t�; t_ = T L⁄ . 

Finding the codes which is represented as the L 

phases’ sequence is more difficult and could be different 

for each radar system. So, the possible number for 

generating a phases’ sequence having L length will be 

unlimited. 

2.5. MIMO Radar Digital Signal Processing Block 

The Figure 1 represents the telecommunication chain of 

Radar MIMO processing. 

The multiple receiver antennas permit to capture all signals. 

The first block consists of filtering processing to separate the 

needed signal for the MIMO Radar systems. 

The second block consists of the radar processing like 

specific processing techniques, a radar imaging application, 

target detection and classification [2]. 
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Figure 1. MIMO RADAR processing chain. 

2.6. Phased Array Antenna 

Many antennas could transmit or/and receive signal of a 

specific’s direction by controlling the phase of the signal. 

This technic is named the phased array where the antennas 

could be placed linearly or planarly. 

The best way to represents the space of the antenna is 

generally a uniform distance. These antennas ’networks 

could send and receive a signal. 

Two antennas could be also used and it’s should be placed 

in different place allowing the radar to work on bistatic 

methods. For this case of radar, a small space between the 

antenna’s arrays permits to have a same SER on each other’s 

like: In phase-shifted array radars. In this method also, the 

transmission array permit to sand the same waveform by 

changing the dephasing offset. [3]. 

Like mathematics models; let’s study a phased array radar 

system having bc  elements ‘transmission and bd  elements’s 

reception. The transmitter and receiver are placed linearly 

uniform and having a space d%	and d� each over. 

The equation (7) expressed the received signal. 

y�t� � fghih	n�n%γk 8 η�t�	                   (7) 

Were, E%: the average total transmitted energy. n	′: the backscatter effect. η�t�	is a zero-mean vector of complex. 

This parameter could also be expressed like the equation 

(8) as a random process: 

η�t� �
o
pq
ηO�t�η:�t�...ηir�t�s

tu	                            (8) 

For a suitable filter of the received signal, the signal 

obtained could be expressed as: x�t� � avθxyfghih	x�t�, where avθxy is the director vector of 

the transmitter. 

In this, the output signal could be sampled at time z	. 
So, the output becomes: 

y�t� � fghih	b{vθx′yb�θ′�a{�θ�avθx′yγk 8 η�t�       (9) 

Where, the equation (10) expressed }v~x′y as: 

avθ′�y �
o
ppq

1e�
��h���v���y=...e�
��v�h��y�h���v���y= s
ttu	                  (10) 

And b�θk�	is: 

b�θk� �
o
ppq

1e��
��h���v���y=...e��
��v�h��y�h���v���y= s
ttu                  (11) 

The equation (12) expressed the channel matrix of phased 

array antenna. 

H � b�θ′�a{�θ�γk	                        (12) 

2.7. Coherent Mimo Radar 

The MIMO radar could be also used for a coherent system 

for transmitting and receiving signals. 

The antennas networks array could be co-located and the 

same or separated network could be used for the transmission 

and reception function. 
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The space of each antenna should be study carefully in the 

case of coherent MIMO radar. The first case is when the 

space is close enough. All the systems show same 

characteristic of the target: same SER. Indeed, the Coherent 

MIMO radar has a big similarity to the phased array radar 

like on the antenna elements, the deployment pattern. The 

second case is when the space is large enough, the coherent 

MIMO radar has a different waveform. 

The mathematics model of a coherent MIMO radar system 

has b� transmit elements and b� receiving elements. 

The equation (13) expressed the received signal by: 

y�t� = fgh
ih	H. x�t − δ� + n�t�	             (13) 

With, 

E%: the average total transmitted energy; 

n	′: the backscatter effect. 

η�t�: a zero-mean vector of complex random processes. 

The received signal has a relation on the input signal to	x��t� 

phased at time instants z	. 
The equation (14) expressed these matched filters 

expressed as a vector. 

y��t� = fgh
ih	γ′� + η��t�	                     (14) 

With, y�	: complex vector having dimensions n%n� × 1,  η�  : complex noise vector having dimensions 	n%n� × 1 ,      γ′� 	expressed by the equation (15) as a complex vector. 

γ′� � �b∗�θ′� ⊗ a∗�θ′�	�	                    (15) 

Where ⊗ denotes the Kronecker product. 

In term of distribution, the equation (16) should be 

verified. 

b∗�θ′� �
o
pq

eVY:� ��h���k�eVY:� ��h
��k�..eVY:� ��h�h ��k�s
tu                     (16) 

a∗�θ′� �
o
pq

eVY:� �h���k�eVY:� �h
��k�..eVY:� �h�h ��k�s
tu	                    (17) 

The equation (18) expressed the channel matrix for the 

coherent MIMO radar: 

H � γkb∗�θ′�a{�θ�	                     (18) 

2.8. Statistical Mimo Radar 

When the space of antennas is really large, each transmitter 

and receiver pair have a different characteristic of the target 

indeed about the SER. So, all signals become independents for 

each pair. The property of this statistical MIMO radar is named 

angular or spatial diversity. [2, 3]. 

The model mathematics of statistical MIMO radar system 

has bc transmitters and bd receivers. 

The equation (19) is expressed the received signal. 

y�t� = fgh
ih	H. x�t − δ� + n�t�	             (19) 

With, 

E%: the average total transmitted energy, 

n	′: the effect backscatter, 

η�t�: a zero-mean vector of complex random processes. 

The received signal has a relation on the input signal to	x��t� 

phased at time instants z	. 
The equation (20) expressed these matched filters 

expressed as a vector.  

y��t� = fgh
ih	γ′� + η��t�                      (20) 

With,  y�	: complex vector having dimensions n%n� × 1,  η� : complex noise vector having dimensions	n%n� × 1, γ′� 	expressed by the equation (21) as a complex vector. 

o
pq

yOOyO:..yirihs
tu � fghih	 o

pq
γOOγO:..γirihs

tu +
o
pq

ηOOηO:..ηirihs
tu        (21) 

The equation (22) expressed the channel matrix for the 

coherent MIMO radar: 

H � diag �b(θ′)γkdiagva(θ)y�	            (22) 

3. Materials and Methods 

The materials and methods concern indeed about the 

compressive sensing, the transmission, the reconstruction of 

signal on reception with CS-NUS. 

3.1. Compressive Sensing 

In the field of digital signal processing (Figure. 2), it is 

customary to refer to the Nyquist-Shannon theorem to 

faithfully reconstruct a signal of width spectral and amplitude-

limited: This theorem, also known as the sampling theorem, 

states that the exact reconstruction of a band-limited signal 

requires that the frequency of sampling is greater than or equal 

to twice the width of its spectrum (i.e., the difference between 

the minimum and maximum frequencies it contains) [4]. 

Except that usually, after this sampling phase, and due to 

transmission or storage restrictions, a compression step is 

performed. 

One of the most popular compression techniques is sparse 

decomposition compression: signals can be sparse or 

compressible in the sense that they have concise 

representations in bases or well-chosen dictionaries. 

Thus, we can cancel a large part of the small coefficients 

without perceptible loss. 
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Figure 2. Conventional approach to digital signal processing. 

This strategy is adopted by most modern compression 

standards, especially in the area of image processing, such 

as JPEG-2000. First a sparse transform is applied to the 

image, translating the input signal into a vector of 

coefficients, then this sparse vector is encoded by 

selecting the most significant coefficients and ignoring the 

smaller ones. The compressed data Y will then be 

transmitted and finally reconstructed. This approach 

works well in many applications. 

However, acquiring many samples and then ignoring many 

of them is extremely expensive. The main idea of 

compressed sampling is, as its name suggests, to directly 

capture the data in a compressed form by exploiting the 

sparse of the signal (Figure 3): instead of generating N 

samples, the goal is to generating only M measurements (M 

<< N) such that their acquisition allows efficient 

reconstruction of the input signal. Thus, compressed 

acquisition makes it possible to capture a signal at a 

frequency significantly lower than the Nyquist frequency. 

 

Figure 3. Compressive sensing paradigm. 

3.2. Signal Acquisition 

Mathematically, Compressive Sensing (CS) is defined by 

[5]: 

Y � ΦX 8 Z	                            (23) 

Y represents the compressed data that will be digitized by 

the ADC or Analog digital Converter quantizer, it is formed 

by M measurements. X is the unknown signal formed by N 

samples. Φ is the matrix of measurement matrix (Gaussian, 

Bernoulli, Discrete Fourier Transform or DFT etc.) of size 

M x N, with N > M, modeling a subsampling and Z is an 

unknown noise term (quantization noise, thermal noise, 

etc.). 

3.3. Signal Reconstruction 

Reconstruction takes more time and power than acquisition. 

For most CS applications, this step is not implemented on the 

circuit with the step of the acquisition. [6]. 

According to equation (23), to reconstruct the signal X 

from the recovered measurements, there are more unknowns 

than equations (N> M). We have in the case of an under-

determined system. Mathematically, this system has an 

infinity of solutions. In order to solve this problem, the CS is 

essentially based on two notions: the sparse (or the 

compressibility) of the signal, and the verification of the 

restricted isometric propriety (RIP) by the measurement 

matrix (or the inconsistency between the measurement matrix 

and the basis of sparse). 

3.4. Sparse and Compressibility 

All intelligence resides in a priori knowledge of the signal. 

In the case of CS, we are interested in sparse or compressible 

signals. The sparse expresses the idea that the information 

rate of the signal is smaller than that suggested by its 

bandwidth. 

In CS, the more signal sparse, the lower the number of 

samples required for its reconstruction. [4, 7]. 

A signal is K parsimonious in a database or dictionary if it 

can be described by a small number K of non-zero 

coefficients in this base / dictionary (K << M <N). It is 

expressed by: 

X � ψS	                                   (24) 

With S the sparse representation of X such that ‖S‖¢ � K 

and Ψ is the basis of parsimony of dimension N x N. 

Equation (25) becomes: 

Y � ΦψS 8 Z	                               (25) 

Few natural signals are sparse: when we talk about sparse 

in CS, we are actually talking about compressibility. 

Intuitively, this means that the signals can be represented by 

a few significant coefficients while the others are close to 

zero. Figure 4 illustrates the difference between these two 

concepts. 

Mathematically, a signal is compressible if the module of 

its coefficients sorted in Ψ follow a decrease in power law: |S¥| � CiV§; 	i � 1,2, …N                      (26) 

Where C is a constant. The larger q is the degradation of 

the signal and the more compressible the signal will be. 

 

Figure 4. Sparse signal (a) and compressible signal (b). 



73 Randrianandrasana Marie Emile and Randriamitantsoa Paul Auguste:  Compressive Sensing and Reconstruction’s   

Algorithm on Radar Mimo 

3.5. Restricted Isometry Propriety (RIP) and Inconsistency 

The CS chooses a K-sparse solution among the possible 

solutions of the equation (23). The existence of the solution 

is trivial. On the other hand, its uniqueness and its stability 

are not guarantees. One of the major contributions of the first 

work on CS is the definition of the mathematical framework 

to satisfy the uniqueness and the stability of the K-sparse 

solution. For this, other conditions must be considered on the 

acquisition method. 

In particular a condition which ensures a good 

reconstruction of the data, is to check that the matrix: A = 

ΦΨ satisfies the restricted isometric property (RIP). [8]. 

Matrix A satisfies the RIP of order K if there is an 

isometric constant δª ∈ �0,1�  such that for any K-sparse 

vector, we have the following frame: 

(1 − δª) ≤ ‖¬­‖


‖­‖



≤ (1 + δª)                (27) 

z® is the smallest number which ensures this framing for 

any K-sparse vector. 

Intuitively, the order RIP k means that the measurement 

matrix approximately preserves the norm of any K-sparse 

vector. The random matrices satisfy the RIP with a very high 

probability with certain conditions on the number of 

measurements. For example, it was demonstrated that 

random matrices with Gaussian or sub-Gaussian inputs 

satisfy the RIP with a high probability provided that ¯ =
0	(°±²³´). 

The RIP condition is a sufficient condition to allow the 

resolution of the equation of CS. It ensures the uniqueness of 

the solution and its stability for 	z® < √2 − 1. Unfortunately, 

RIP is a difficult NP problem. It is difficult to construct 

matrices satisfying this property with certainty and to verify 

it. There is another theoretical approach to compressed 

acquisition based on the notion of the inconsistency between 

the measurement matrix and the sparse basis. 

Consistency between Φ and Ψ is expressed by: 

μ(ϕ, ψ) = ·(N)	max¸< Φ¹, ψY >¸	               (28) 

1 ≤ u, j ≤ N 

With 1 < μ(ϕ,ψ) < ·(N)	  is the set of consistency 

values between a line of Φ and a column of Ψ. The lower 

the consistency, the lower the number of measurements 

required for reconstruction and the greater the compression 

factor. [9]. 

Intuitively, low coherence means that the signal which is 

sparse in Ψ has a dense representation in Φ. An example of 

two inconsistent bases is the time frequency duality: a Dirac 

or a peak in the time domain is spread out in the frequency 

domain. Conversely, a frequency is spread into a pure sine 

wave in the time domain. 

Compressed sampling theory based on this approach 

states that if we perform M measurements using linear 

random projections, i.e., by taking the product of the input 

signal with a random measurement matrix, then the number 

of measurements needed to recover X with a high 

probability is: 

M ≥ Cu:(ϕ, ψ)	K log(N)               (29) 

In the case where the measurement matrix is completely 

inconsistent with the sparse basis, the minimum number of 

random measurements to have a high probability, a good 

reconstruction is: 

M ≥ log(N)                           (30) 

Note that some random matrices are largely inconsistent 

with any fixed bases. Indeed, if we choose an orthonormal 

measurement matrix whose columns are taken in a uniformly 

random manner then, with a very high probability, the 

consistency between the measurement matrix and the 

parsimony basis is of the order of:  

·2logN                                       (31) 

This is why a Bernoulli matrix, composed of random ± 1 

binary inputs, or a Gaussian matrix are highly inconsistent 

with any basis of sparse. 

3.6. Greedy Reconstruction Algorithms 

Several reconstruction techniques have been explored to 

recover the sparse solution from a reduced number of 

measurements. Greedy algorithms are signal processing 

techniques, called sparse decomposition techniques. The idea 

is to iteratively construct a sparse approximation of the signal. 

[10]. 

Greedy algorithms build from an initial value X¢ = 0, at 

each iteration, an approximation X¾	signal and evaluates a 

residual error. The operation is repeated until a stop criterion 

set by the user. 

1. Matching Pursuit (MP) 

We have a measurement vector Y and a matrix A = ΦΨ 

and we want to write Y as a linear combination of 

elements a¥ of A or at least approach Y by such a linear 

combination, in other words reconstruct the signal X. The 

MP proposes a simple approach: At the start, the residue r 

is initialized with the measurement vector Y and the 

approximation of the signal X¿ by a zero vector such that 

r¢ ← Y and X¿ ← 0. 
At each iteration k, the algorithm will have to choose the 

column a¥  of the matrix A most correlated to the 

measurement vector Y. The standard MP algorithm uses the 

dot product as the correlation function. 

λ¾ = argmax|< r¾VO, a¥ >|	                (32) 

Where, 

λ¾	is the index of the selected column; 

r¾VO	is the residual of the previous iteration; 

a¥	represents the column of matrix A with 1≤ i ≤ N, they 

are also called atoms. 

Then, the MP constructs a new approximation of the signal 

by adding to X¾Â the projection of the residue on a¾, then it 

updates the residual signal (this is called the residue) 

r¾ = Y − Y¾. 
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X¾Â � X¾VOÃ8µ r¾VO, a¾ º. a¾	               (33) 

Where, X¾VOÃ	represents the approximation of the signal obtained 

during the previous iteration; r¾	is the column of the selected matrix A. 

The process is repeated until the signal is broken down 

satisfactorily, that is, until the stop condition is met. The 

criterion for stopping this algorithm may be: 

a) A residual error below a given threshold 

b) A maximum number of iterations; 

c) A criterion of calculation time, memory, etc. 

The description of the MP algorithm is as follows: 

Algorithm 1. Ä � ¯��Å, Æ�: k � 1, //	initialization ε¢ � y, dictionnary	D¢ � ∅  
k = 0 

repeat for	m ← 1,M	do  C�¾ 	← 〈e¾VO, ϕ�	〉	//	Scalar	products	 end	for  m¾ ← argmax� ¸C�¾ ¸	//	Selection D¾ ← ÏD¾VO, ϕ�ÐÑ //	Actif	dictionnary x¾ ← Ïx¾VO; 	C�Ð¾ Ñ //	Actif	coeffcient e¾ ← e¾VO � C�¾ ϕ�Ð	//	Residue	k ← k 8 1  until	�residual	error µ threshold	or	k ºmax	_iteration	or	memory	 º max	_memory	�  
2. Orthogonal Matching Pursuit (OMP) 

In the OMP we also select the atoms ai one by one but 

with each new atom selection, we choose as a new 

approximation the orthogonal projection of the starting signal 

Y on the subspace generated by all of these atoms v}Ó 	for	Ô �1…Õy. This update rule makes that after k iterations,	∀	× �1…Õ,µ }Ø , ÙÚ 	º� 0, 

So, with each iteration a new atom will be selected. Thus, 

the OMP performs a maximum of M iterations for a 

measurement vector Y having M elements. 

The description of the OMP algorithm is as follows: 

Algorithm 2. Ä � Û¯��Å, Æ�: k � 1,	// initialization ε¢ � y D¢ � ∅	//	dictionnary 

k = 0 Repeat  for	m ← 1,M	faire  C�¾ 	← 〈e¾VO, ϕ�	〉	// Scalar	products  end	for  m¾ ← argmax� ¸C�¾ ¸	// Selection D¾ ← ÏD¾VO, ϕ�ÐÑ	// Actif	dictionnary x¾ ← argminÜ 	Ýy � D¾xÝ::	// Actif	coeffcient: e¾ ← y � D¾x¾  k ← k 8 1  until	�residual	error µ threshold	or	k	 ºmax	_iteration	or	memory	 º max	_memory	�  
 

3.7. Compressive Sensing with Non-uniform Sampling 

Architecture (CS-NUS) 

It is an architecture suitable for sparse signals in the 

frequency domain �ψ � DFTVO�. 
It is based on the principle of time-frequency duality: 

Indeed, the time and frequency domains are inconsistent with 

each other. So, for a sparse signal in the frequency domain 

and applying the probabilistic approach of compressed 

acquisition, it suffices to acquire samples in the time domain 

in a non-uniform and arbitrarily spaced way. [11-13]. 

The idea behind the NUS is schematized in Figure 5. For 

the sake of didacticism, suppose that there is an ADC which 

samples the input signal at the Nyquist frequency. A Pseudo-

Random Bit Sequence (PRBS) controls which of these 

samples are collected and which are ignored. Of all the N 

samples at the Nyquist frequency, only M≪N are collected. 

 

Figure 5. Conceptual diagram of the NUS architecture. 

The aim of the CS is to obtain an average sampling 

frequency lower than the Nyquist frequency. Also, in 

practice, non-uniform sampling based on the principle of 

compressed sampling (CS-NUS) chooses samples 

arbitrarily spaced by an integer number of clock periods at 

the Nyquist frequency. 

The measurement matrix corresponding to this architecture 

is a rectangular matrix of M× N presented by ΦNUS: in each 

row of the measurement matrix, there is only one coefficient 

not zero and equal to 1. The location of this coefficient in the 

line is random, this allows to define a sample among N which 

will be taken in a random way. An example of measurement 

matrix Æàáâ is illustrated by:  

Æàáâ � ã1 0 0 0 0 … 00 0 1 0 0 … 0	0 	0 	0 ⋱0 	… 	 	1 0å
æ×à

          (34) 

4. Results and Discussion 

4.1. Analysis of Coherence and Measurement Matrices 

After simulation the consistency between the matrix ψDFT�1	and the measurement matrices could be represented 

on the figure 6. 

The Figure shows multiple parameters like:  

1. The matrix Æç  having components giving from a 

random process like Gaussian with zero mean and 1 ¯⁄  

variance. 

2. The matrix Æè�¢,O�  having components giving from 

random process like Bernoulli and which could have 

values between {0, 1}. 

3. The measurement’s random demodulator named by Ædé. 
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4. The measurement’s matrix Non-Uniform Sampler Æàáâ. 

 

Figure 6. Measurement’s matrix Æ		and coherence ê between ëéìc��	. 
On the MATLAB simulation, the parameters values taken 

for having these results are N = 500 and M between 25 to 

475. The two coherences: at the first between the Gaussian 

the matrix and the matrix ëéìc�� ; at the second between 

Bernoulli random matrices and the matrix ëéìc�� 	looks like 

a curve similarly constant and which is independent of the 

M’s value. This constant is around 4.5. When M’s values are 

high, the consistency between the matrix Ædé  and the 

matrix’s base sparse ëéìc��		 take value nearby 2. Noticed 

that the value 1 is the of consistency’s lower bound. The 

three curves converge from M = 100. 

Even without random columns’ permutation and random 

generation values of blocks which forming the diagonal 

doesn’t change the consistency between 	ëéìc��  and the 

matrix’s measurement.  

The consistency for the	Æàáâ , is near the constant with 

value 2. 

In Non-uniform sampling, having signal lower is due to 

the inconsistency between time and frequency. 

The matrix’s measurement modeling the under-sampling 

looks like the canonical matrix. The inconsistent exist 

between the	íî�VO and this matrix. [14, 15]. 

 

Figure 7. Architecture with NUS measurement’s matrix ϕ. 

The architecture has a random row coefficient location 

which gives the property with sampling among N by using a 

random process. In this article, we use this method for 

generating the measurement matrix like on the Figure 7. [15]. 

4.2. Reconstruction Algorithm with Quality Evaluation and 

Metrics 

It’s possible to measure the distortion between the origin 

signal x and the reconstructed signal Äï  for evaluation the 

quality of the reconstruction. The equation (35) and (36) 

expresses the evaluation’s criteria named respectively: 

“Percentage Root-mean-square Deviation (PRD)” and the 

“Signal to Noise Ratio (SNR)” [15]: 

PRD�%� � ‖ÜVÜï‖
‖Ü‖
 ( 100	                     (35) 

SNR�dB� � 20logO¢
‖ÜVÜï‖


‖Ü‖

	                   (36) 

With, Ä: the original  

Äï : the reconstructed signal. 

The quality of reconstructed signal will be evaluated by 

the PRD value, the Compression Ratio (CR) and the 

Compression Factor (CF) expressed respectively by the 

equation (37) and (38). 

ò��%� �
àVæ

à
( 100	                     (37) 

òî �
à

æ
	                              (38) 

With, M: the rows’ numbers of the measurement matrix ϕ 

N: the columns ‘numbers of the measurement matrix ϕ. 

For the simulation, sinusoidal signals is taken from the 

MATLAB database The signals will be divided into blocks 

of consecutive samples named by N. On the radar emitter, 

The NUS measurement matrix permits to the signal to be 

compressed. Then, on the radar receiver, the block of 

reconstruction is a processing bloc permits to have a signal 

similar of the signal sent. In this, two algorithms of 

reconstruction are proposed. After the full signal 

reconstruction, the criteria defined previously are valuated 

like: PRD and SNR. 

 

Figure 8. SNR and CR using sinusoidal signals. 
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The Figure 8 explains that’s with it is possible to modify 

the SNR for each transmission. If we fixed the SNR, for 

example 30dB, the OMP offers a good compressive ratio 

than MP. In the same condition radio of transmission, it’s 

possible to have a big compression ratio using OMP than MP. 

For any constant compressive ratio, for example 70%, the 

SNR of MP is not good than OMP. So, with a fixed 

Compressive ratio, the OMP could support more bad 

condition radio than MP. 

 

Figure 9. PRD as a function of compression ratio for sinusoidal signals. 

The Figure 9 shows the similarity of the reconstructed 

signal and signal sent comparing to the compression ratio. If 

the PRD is near zero, the two signals are quasi-identic. So, 

the OMP offers a good quality of reconstruction than MP for 

each compression ratio. 

Figure 8 and Figure 9 show the curve of SNR and PRD 

expressed by the compression ratio. Using high compression 

rate permits the degradation of the reconstructed signal. We 

got a higher SNR and a lower PRD. Due to the parsimony of 

sinusoidal, the performance could be a bit best than classic 

signal. 

4.3. Norm Lp 

Let’s define a discrete signal with finite length modeling as 

vectors in a dimension N of Euclidean space represented by: �ó�: X � XO , X:, … X��. It’s possible to express the norm of ôõ	like the equation (39) [16]: 

‖ö‖õ � �∑ |öØ|õàØTO �O õ÷ ø ∈ �1,∞�              (39) 

For measuring the signal’s strength or an approximation’s 

margin error, standards could be used primarily. It’s very 

important to choose this standard L_  because its influences 

the characteristic of the resulting approximation error. A high 

values of "p" conducts to the distribution of the error more 

evenly among the signal coefficients. A low value conducts 

to an error which is more unevenly distributed. So, it’s will 

tend to have a good sparsity. 

So, the most general evident is to use the norm LO	 to 

reconstruct signals ‘parsimonious. 

4.4. Radar Signal and His Compressibility 

For the compressibility of the signal, a transform should be 

used for having parsimony. It could be divided in two 

categories:  

1. The bases / dictionaries which need to study the signal 

for long training examples. 

2. The usual frequency and wavelet transform (Fourier, 

identity, wavelet, etc.).  

Multiple domains like signal’s compressibility in the time 

domain �ψ � Identity� , in the frequency domain �ψ �DFTVO� and in the time-frequency domain (wavelet domain 

which has a waveform close to the signal waveform) permits 

to study the compressibility [15]. 

Note that, the condition for having a compressible signal in 

a specific domain consists for decreasing rapidly the 

coefficients’ moduli �|S¥|�  which is sorted in ë . Then the 

signal is more compressible when the decay is faster. 

 

Figure 10. Compressibility of signal radar on time domain. 

In all specifics (time, time-frequency using Daubechies10 

wavelet, frequency) domains, the radar signal compressibility 

will be represented on the Figures 10, 11, 12 and 13. 

 

Figure 11. Radar signal compressibility on frequency time having a dB10 

wavelet. 



77 Randrianandrasana Marie Emile and Randriamitantsoa Paul Auguste:  Compressive Sensing and Reconstruction’s   

Algorithm on Radar Mimo 

 

Figure 12. Radar signal compressibility on the frequency domain. 

Our simulation is tested at 1 second of data having 80 

million of sampling. 

All Figure show that when the �|S¥|� decrease near zero in 

all specific domain (the time domain; the time domain and 

frequency), it will be slow and small than the decay in the 

frequency domain. Then, in the frequency domain, the Radar 

signal is more compressible. 

 

Figure 13. Radar signal Compressibility in the frequency domain and |Si |. 

The Figure 13 shows the relation between the Fourier’s 

module and the coefficients sorted by a decrease power law: 

When |ûØ| � 3.72×Vþ  like on the same figure; with i is the 

coefficient’s index sorted in the 	íî�VO transform; the curve 

decreases also. 

4.5. Compressive Sensing Radar and Multi-Targets 

1. Schematic illustration with two targets radar 

The radar MIMO system has a source S which emits a 

propagation wave having frequency f, and propagates in 

space for reflecting partially on the targets òO  and ò:  at a 

distance �O  and �: . In this, the Figure 14 represents the 

equivalent radar surface û��O and û��: of the two targets. 

 

Figure 14. Schematic of the study in general. 

The results depend on the nature of frequency which could 

be separatee in two cases:  Very High Frequency (VHF) and 

High Frequency (HF). 

2. Very High Frequency (VHF) 

The parameters the VHF case could be shown in the Table 1. 

Table 1. VHF’s parameter. 

Number of target � � 

PRI’s value 100ê� 

Frequency + 50¯�5 

Position relative � 50	- 

Target position 1 �O 25	- 

û��O 1	-: 

Target position 2 �: 35	- 

û��: 2	-: 

Windowing Hamming 

One of the parameters is the Period Repetition of 

Impulsion (PRI). 

In signal MIMO radar processing, for the interest of the 

limited length, windowing is used.: indeed, about the limited 

duration of the real signal. Then, a finite number of points is 

done on computation processes. To show a signal in a time ‘s 

finite period, it should be multiplied by function named by an 

observation window. 

 

Figure 15. Signal’s VHF echo. 
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By using the parameter 1; the result on Figure 16 and 

Figure 17. Firstly, the Figure could be interpreted by 

separating it in two curves: on the left of zero value for 

illustrating the radar signal’s VHF sent and on the right of 

zero value for showing the radar signal’s VHF echo without 

compression. Secondly, Figure 17 represents the same curve 

but using a simple compression. 

 

Figure 16. Signal’s VHF echo after compression. 

The two pics on the figure represents the presence of two 

targets that we named òO and ò:. 

3. High Frequency (HF) 

Like on VHF, the HF’s parameters parts could be found in 

the Table 2. 

 

Figure 17. Signal’s echo HF in low frequency. 

Table 2. HF’s parameters. 

Number of target � � 

PRI’s value 100ê� 

Frequency f 6¯�5 

Position relative � 50	- 

Target position 1 �O 25	- 

û��O 1	-: 

Target position 2 �: 35	- 

û��: 2	-: 

Windowing Hamming 

 

Figure 18. Signal’s echo HF after compression. 

By using the parameters 2, two results appear after 

simulation like on Figure 17 and Figure 18. The first figure 

represents the radar signal’s echo HF and the second represents 

the result of the radar echo HF after simple compression. The 

methods in this article concern a sampling based on condition’s 

Nyquist-Shanon and pulse compression. 

Instead of Figure 16, the two targets òO  and ò:  doesn’t 

appear on the curve due to low frequency. In the two Figures 

17 and 18, Hamming windowing permit to have an 

observation of window function. 

4. Proposed solution and numerical simulation 

 

Figure 19. Echo signal sampling. 
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Like proposed solution, the CS will be applied for the radar 

signals and the simulation keeps the same value like in the 

previous parameter 2 so his frequency should be low. (For N = 

1028 and M = 171). This sampling method is represented in 

the Figure 19 and is colored on red. So, the red curve 

represented the CS-NUS instead of using a classic sampling. 

The result in Figure 20 shows that, the Sparse Fourier 

Transformation (SFT) concerns generally a technique using 

at NUS methods. It is possible to compute outputs and take 

the advantage of the low complexity compared with the 

method which uses Fast Fourier Transformation (FFT). 

Using SFT, the data streams processing could be 10 to 100 

time faster than FFT. So, on FFT; we should process all the 

sequences and the non-zero values gives desired output. 

Indeed, a same area regroups the similarity: at the 

beginning and the end for representing the low frequency. 

Without SFT, this sparse representation couldn’t be obtained. 

 

Figure 20. Sparse representation of the Fourier transform. 

 

Figure 21. Signal’s reconstruction. 

The Figure 21 represents the reconstructed signal on the 

receiver. 

 

Figure 22. Minimisation L2 naïve solution. 

Different ways could be done for analyzing a data set 

made up of P signals. Our solution groups all components 

under a technic named by Component Analysis. Noticed that; 

in this, components are represented like synonym of atom. 

 

Figure 23. PCA transform with 2 eigen vectors. 

Respectively, like summarize, the Figure 19 until 24 shows 

the echo signal sampled on radar, sparse representation by 

using Fourier transform, reconstruction’s signal, naïve ô: minimization solution, the transformation using PCA 

(Principal Component Analysis) with 2 eigenvectors and he 

OMP reconstruction with approximate solution of ôO . The 

NUS’s stages architecture are illustrated in these all figures. 
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Like results shown in Figure 22, proposed solutions with ô:	the minimization have the same as those of the values of SERO  et	SER:  i.e, ¸XS
�f�¸ � �1,2	. Shown in Figure 24 by 

using the 	ôO	approximate solution, this figure represents two 

sharp pulses for illustrating the numbers of targets named by: òO and	ò:. Instead of the simple method represented in Figure 

18, it is not possible to distinguish the two targets from these 

pulses. So, this technique of compressed acquisition named 

differently by compressive sensing has more advantages 

indeed about the reconstruction and precision in the sampling 

domain even the frequency used is low. 

 

Figure 24. OMP reconstruction with approximate solution of L1. 

5. Conclusion 

Our research permit to conclude that using Compressive 

Sensing doesn’t need to invest a lot of resources. Most of 

transmitted signal are anyway zero. On Radar MIMO, it 

could reduce power transmission for the multiple targets. 

This technique needs mathematical condition to be satisfied 

like: propriety signal, compressibility, matrix measurement. 

After acquisition, two greedy algorithms MP and OMP are 

used to reconstruct the signal. The OMP reconstruction is the 

most robust. It could be used with high CR and good 

similarity of signal with low PRD. Using CS, the sampling 

could be lower than Nyquist-Shannon. For multi-targets, the 

VHF could be reconstructed without new technics. For the 

HF, PCA could be done for the reconstruction of signal. 
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