

American Journal of Electrical and Computer Engineering
2019; 3(2): 58-66

http://www.sciencepublishinggroup.com/j/ajece

doi: 10.11648/j.ajece.20190302.12

ISSN: 2640-0480 (Print); ISSN: 2640-0502 (Online)

Pixel-based Character Image Compression for Data
Transfer from ARM Controller to FPGA System

Thanh-Hai Nguyen
1, *

, Ba-Viet Ngo
1
, Thanh-Tam Nguyen

2
, Duc-Dung Vo

1
, Truong-Duy Nguyen

1

1Department of Industrial Electronic - Biomedical Engineering, HCMC University of Technology and Education, HCM City, Vietnam
2Department of Biomedical Engineering, International University-Vietnam National University, HCM City, Vietnam

Email address:

*Corresponding author

To cite this article:
Thanh-Hai Nguyen, Ba-Viet Ngo, Thanh-Tam Nguyen, Duc-Dung Vo, Truong-Duy Nguyen. Pixel-based Character Image Compression for

Data Transfer from ARM Controller to FPGA System. American Journal of Electrical and Computer Engineering.

Vol. 3, No. 2, 2019, pp. 58-66. doi: 10.11648/j.ajece.20190302.12

Received: February 4, 2020; Accepted: February 20, 2020; Published: March 2, 2020

Abstract: This paper proposes a pixel-based compression algorithm for character digital image in improving the storage of

characters in memory during system operation. In particular, in this algorithm, each character binary image in text is grouped by

binary numbers and then encoded to reduce the character image capacity of the character compared to the original character. In

addition, a novel point in this algorithm is that one character image type is differently grouped binary numbers for compressing.

Therefore, the compressed character image is stored in a memory using an ARM microcontroller system and transferred to an

FPGA module for decoding before printing. Moreover, the compression ratio of each character is high or low depending on the

font type of image characters. Therefore, the high compression ratio using this compression algorithm will allow saving memory

space in the memory system. Simulation results show to illustrate the effectiveness of the proposed algorithm and also this

compression algorithm was implemented to texts with characters for encoder data transfer from an ARM microcontroller into an

FPGA system for effectively printing the text/logo/barcode/QR code/expired date on products with high speed after decoding.

Moreover, this compression algorithm can be developed to apply to many different font types and sizes, as well as be utilized

different microcontrollers/Microprocessors connected to FPGA systems for processing with high speed. It means that one

industrial system using this algorithm can obtain very high performance related to processing digital image characters.

Keywords: Character Encoder and Decoder, Pixel Groups in One Character, Character Compression Rate,

ARM Microcontroller and FPGA

1. Introduction

Character compression always attracts researchers due to

its effectiveness during storing and transferring data. In many

control systems, processing with high speed in real time is

very important due to increasing product performance [1-4].

For example, products such as drinking water bottles,

smartphones, shampoo bottles, computers and others are

recorded information (company logo, brand, date of

manufacture, expiry date and product code and product

parameters). To be able to print a lot of information at a high

speed in a system connected between microcontroller and

Field-Programmable Gate Array (FPGA), compressing image

containing product information to store in memory with the

microcontroller and to use FPGA for printing high speed is a

suitable solution [5-7].

In practice, embedded systems often include Advanced

RISC Machine (ARM) microcontroller, Random Access

Memory (RAM), Read-Only Memory (ROM), NAND flash

and peripherals suitable for use [8]. In the field of industrial

printing (printing models on the packaging, outer cover of the

product), the input data is usually an image file, so

processing the image file on the microcontroller takes a lot of

time. However, in order to meet the requirements in real-time

control, the combination of FPGA (Field-programmable gate

array) and microcontroller is suitable.

The computer has a PCI-E (Peripheral Component

Interconnect Express) standard that allows high-speed

communication between Video Graphics Array (VGA) card

 American Journal of Electrical and Computer Engineering 2019; 3(2): 58-66 59

and Central Processing Unit (CPU), while the

microcontroller only has data transfer standards such as SPI,

I2C, UART and CAN for transferring an image file from one

microcontroller to an FPGA and then the image must be

downsized before transfer [9, 10]. Therefore, for transfer with

high speed, it is necessary to study data compression and

decompression algorithms for applying hardware systems to

meet the set targets.

The compression algorithm using LZSS method is capable

of processing up to 50 MB per second on a Virtex-5 FPGA

chip [11]. The authors exploited dual-port RAM blocks that

could be independently addressed within the FPGA chip to

achieve an average performance of 2 bytes of speed. To make

the compressed stream compatible with the ZLib library, the

output encoding of the LZSS algorithm was applied for a

fixed Huffman table defined by the Deflate specification [12].

In this study, Fowers recommended a method of changing the

amount of memory allocated to different internal tables

affected performance and compression ratio.

The LZW decompression algorithm has been studied in

recent years and the authors applied it for an FPGA system

[13]. The experimental results showed that a proposed

module for the Virtex-7 FPGA XC7VX485T-2 family run

2.16 times faster than when decompressing using the

sequential LZW method on a single CPU with the 301.02

MHz frequency of FPGA. Because this proposed module was

designed to be compact and used in some FPGA resources.

Therefore, the study has been successful in implementing

150 identical modules on the FPGA, where the frequency of

the FPGA is 245.4MHz.

In another study, the authors designed one system based on

FPGA and implemented a set of 3D triangular grids [14].

Triangular mesh is the main advantage in 3D geometry.

Therefore, the prototype extraction process was performed

based on a simple and highly effective triangle mesh

compression algorithm, called BFT coding. Moreover, this is

the first hardware made for triangular decompression.

Therefore, the decompression procedure could be added at

the top of the interface of a 3D graphics card on PCI/AGP.

This reduced the bus bandwidth required between the host

and the graphics card by up to 80% compared to standard

triangular mesh representations.

Research [15] described a data compression method for

FPGA systems called the Golomb encryption algorithm. This

method was widely used for data compression with lower

complexity in encryption and decoding methods. The main

goal of this data compression was to find redundancy and to

eliminate it through the Golomb algorithm. Therefore, the

data are required less memory and the small size of the data,

so the transmission cost was lower reduction. This study

showed the low-complexity data compression and accurate

reproduction of the original data from the compressed data,

while the data compression could be lost and unable to

reconstruct the original data completely from the data

compressed.

In other compression techniques, the authors put out 3

steps: 1-intelligent arrangement of compression bits which

can significantly reduce the cost of the decompression engine;

2-combination of bitmask-based compression and long

running code and repeating patterns; 3-parameter selection is

beneficial for bit stream compression [16, 17]. Moreover,

exploring the idea of configuration compression, developing

algorithms for identification systems and these algorithms

aimed to apply Xilinx Virtex FPGA with minimal hardware

modification for significantly reducing the amount of data. In

this study, the authors used compression techniques including

Huffman coding, arithmetic coding and LZ (Lempel-Ziv)

encryption, different algorithms developed to target different

hardware structures. In the “Read back” algorithm, certain

frames wer reused as a dictionary and it was fully utilized in

the configuration bit stream [18].

GNU Zip (GZIP) is a popular compression utility that

provides a reasonable compression ratio without exploiting

the patented compression algorithms [11-13]. The authors

introduced the compression algorithm in GZIP using variants

of LZ77 encoding, static Huffman coding and dynamic

Huffman coding. Given that web traffic accounts for 42% of

all internet traffic, the acceleration of algorithms like GZIP

could be beneficial for reducing internet traffic. The

hardware implementation of the GZIP algorithm could be

used to allow CPUs to perform other tasks, thus it increased

the performance of the system [19]. Besides many

compression and encryption algorithms such as Jbit

Encryption (JBE), this algorithm manipulated every bit of

data inside the file to minimize the size without losing data

after decoding and then it was classified into lossless data

[20]. Moreover, a word lookup algorithm was the part of the

operating system and the reduction was worked out by the

operating system [21].

To solve the reduction of storage capacity in a

microcontroller system, the authors used one JPEG lossy

compression method with DCT encryption algorithm

combined with Huffman encryption [22-25]. In particular, the

image used in this research is a grayscale image with a code

word created by scanning a quantized matrix. The results

achieved used on Keil C software platform for ARM7

microcontrollers with good compression ratio of 90% to 95%

[26]. In the article [27], the authors utilized one dictionary

encryption method in combination with a Huffman

encryption one to compress data running on different

hardware platforms. With the instructions used for PowerPC,

i386, and ARM microcontrollers, it was summarized that the

important factors affected compression results. The first

important factor is the size of the dictionary and this is the

most important parameter to achieve a good compression

ratio. The second factor is that the size of the code word

below the size of the script is reduced. The results of this

paper were achieved by an average reduction of 39%, 34%

and 26% for PowerPC, ARM and i386, respectively.

In this article, to be able to store large amounts of character

images, as well as to reduce the processing time of text, the

character image compression algorithm is recommended so that

the system using the ARM microcontroller can save many

characters and other information in memory. Besides, this

60 Thanh-Hai Nguyen et al.: Pixel-based Character Image Compression for Data Transfer from

ARM Controller to FPGA System

character compression method is performed by encoding and

decoding the characters and this allows reducing the amount of

storage in memory. In addition, it can increase processing speed

and design more processing functions with meeting real-time

requirements during the operation of a system. Moreover, this

paper shows an application of connecting between one ARM

microcontroller (encoder block) and one FPGA (decoder block)

for the input character images, in which the decoding block of

the FPGA for decompressing the data and then recreate the

character image sent by the encryption block for printing

information as shown in Figure 1.

Figure 1. Block diagram depicting the process of compression and

decompression.

2. Proposed Methodology

2.1. Compression Algorithm Based on Pixels

For character compression, all character images in text are

converted into binary images and each binary character will be

analyzed to divide binary pixels into pixel groups for

encoding.

2.1.1. Pixel Analysis of Character image

In applications, bitmap fonts often have high performance

rates because they are already pre-decoded. However, these

fonts are very memory intensive to store in memory spaces.

For example, to store an Arial font with unsigned for the print

head, the font size can be determined by the following

formula:

3
c s

Size h w n n= × × × × (1)

where Size is the font package size; h denotes the height of the

character; w is the width of the character; nc describes the

number of characters to create in the font table; ns is the

number of font sizes of fonts

For characters with h=300, w=300, nc=128, ns=27, the font

size is calculated as follows:

3 300 300 128 27 933120000 (bytes)Size = × × × × = (2)

According to Eq. (2), storing the Arial font set with 27

different sizes is required about 1GB of memory. Because this

capacity is too large for a microcontroller-based system, so the

use of bitmap fonts is not feasible and the design for this

system type should be consider by other options.

In the case of using binary fonts, the memory capacity is

also significantly reduced. However, when decoding, the use

of bit splitting operations will take more time and this can

causes a delay in the printer system. Therefore, the formula to

calculate the binary font size is described as follows:

3

24

c sh w n n
Size

× × × ×
= (3)

For characters with h=300, w=300, nc=128, ns=27, the font

size is calculated as follows:

3 300 300 128 27
38880000 (bytes)

24
Size

× × × ×= = (4)

To further reduce the font size and the decoding time, the

font compression solution can be chosen as described in

Figure 2.

Figure 2. Block diagram of TTF font compression solution.

According to Figure 2, to convert TTF fonts to bitmap

formats, a proposed algorithm allows displaying the

characters of the font converted and then capturing the

displayed image to save as a bitmap file. To convert the

bitmaps to binary images, the image segmentation method is

applied to retain the lines and the font compression algorithm

with the binary font is performed by the following steps:

Step 1: Put the character to be compressed into a coordinate

system to address each pixel in the character.

Step 2: Analyze each column of the character to be

compressed one by one and mark the coordinates of the

displayed areas.

Step 3: Remove adjacent columns with the same

parameters.

Figure 3 depicts the result of compressing the letter E. After

compressing memory, it takes 13 bytes for the letter E: 17, 1, 0,

27, 4, 0, 2, 4, 14, 16, 4, 25, 27. Specifically:

17: the word includes 17 columns.

1, 0, 27: column 1
st
 displays from row 0

th
 to row 27

th
.

4, 0, 2: column 4
th

 displayed from row 0
th

 to row 2
nd

.

4, 14, 16: column 4
th

 displays from row 14
th

 to row 16
th

.

4, 25, 27: column 4
th

 displays from row 25
th

 to row 27
th

.

 American Journal of Electrical and Computer Engineering 2019; 3(2): 58-66 59

Figure 3. Description of the character E for compressing fonts.

This font compression process only takes 13 bytes to save

the E font instead of 11250 bytes for binary fonts (300 x 300/8)

and 270000 bytes for bitmap fonts. Besides, for bitmap and

binary fonts, it is necessary to recalculate the height of each

column to pass to the vertical reconstruction function while

compressed fonts only take calculated parameters. The

built-in transmission to this function leads to a significantly

increased decoding speed.

2.1.2. Character Encoding

Currently, the popular fonts applied in the system with

embedded between ARM microcontroller and FPGA are

ASCII codes. In order to implement the recommended

compression solution for fonts, it is necessary to analyze

ASCII code. Specifically, based on ASCII code, we find that

Latin characters have solid lines and some discrete lines.

Therefore, we can choose the compression method with

statistics adjacent pixels to perform the compression for each

character in text.

In order to perform compression for each character, pixels

of an image character are divided into column and row groups

and then they are worked out using the process of encoding

characters. This method allows encoding to reduce the

necessary memory capacity for storing characters. This means

that the memory capacity used to store texts throughout the

editing process in the microcontroller system will reduce and

the procedure for this process is described in Algorithm 1. In

particular, the compression method will be performed by

creating a compressed font table with the largest font size.

Assume that a much smaller font (β times) is used in this case

and just divided into all the values of the encrypted font by β

times for decoding. In particular, to compress any character,

the character image is divided into pixels in length and width

to equal to half the font size of an original character by

following steps:

Step 1: Take all elements of the original data divided by 2

Step 2: Decode the font according to the new data table

obtained in step 1, and then get a reduced-size character.

Algorithm 1: The character encoding algorithm

1:

Input:

Initial variables k, m, n=0, sobyte=0

Read bitmap file of character for information of high,

long, width, byte on one column and content

2: if n < width then

3: k=0

4: if m < sobyte on 1 column then

5: if m
th

 byte of column n=m
th

 byte of column n +1 then

6:
k=k + 1

m=m + 1

7: else m=m + 1

8: else if k < sobyte on 1 column then

9:

Store value n (column 1)

Store the begin location, bit 1 of column n

Store the end location, bit 1 of column n Add 3 for

sobyte

n=n + 1

10: else n=n + 1

11: end if

12:
Output:

The data string of the encrypted character

2.2. Character Decoding

After the character image has been encoded, the decoding

of the character is performed by returning the encoding

sequence and then rebuilding the character's frame. In

particular, one set level 1 (dividing the pixels into level 1s or

level 0s) of all empty columns according to the procedure of

the following empty column and it is similar to the previous

column until obtaining a new value. This algorithm, called

Algorithm 2, is described as follows:

Algorithm 2: The character decoding algorithm

1:
Input:

Initial and assign variables “size”, n=0

2:
Divide bytes of compressed character codes to decode

for “size” to change font size

3: if n < total byte of character compressed data then

4: if Data byte n+3 subtract n
th

 data byte >1 then

5:

Plot rectangular with 4 peaks: (n, n+1), (n, n+2), (n+3,

n+1), (n+3, n+2)

n=n + 3

6:

Else

Plot straight line across 2 points: (n, n+1) and (n, n+2)

n=n + 3

7: end if

8:
Output:

Decoded characters

Algorithm 2 shows that a character decoding is processed

based on dividing the pixels of that character after decoding.

It means that this algorithm allows decoding the characters

and performing texts for display or transfer of data to other

modules. After decoding, the character capacity is reduced

for storing and processing faster. Moreover, character

60 Thanh-Hai Nguyen et al.: Pixel-based Character Image Compression for Data Transfer from

ARM Controller to FPGA System

capacity reducing after the compression algorithm depends

on the character type and font.

2.3. Compression Rate

After encoding and decoding, the character image is

performed by applying the encoding sequence and rebuilding

the frame of the character as the original character. In

particular, level 1 of all empty columns is assigned according

to the procedure of the next empty column similar to the

following column until getting a new value. Thus, the

compression of the character by the encoding and decoding of

any character will result in byte and its capacity of the

character is often much smaller than that of the original

character.

For calculation of the compression ratio CR of a character

using bitmap font, is made according to the following formula:

S
CR

CS
= (5)

in which S is the original character image size and CS denoting

the character capacity after the compression in byte.

8

h w b
S

× ×= (6)

where h is the number of vertical pixels and w denotes the

number of horizontal pixels, b describes the gray bit in the

image. Therefore, the compression ratio SCR is calculated

using the following formula:

100%
S CS

SCR
S

−= × (7)

With the proposed compression algorithm, compression

ratio of different characters can be different depending on the

complexity of the image character. In addition, it can relate to

the suitability of each design in a microcontroller-FPGA

system when performing interface between different

components or devices.

3. Results and Discussion

In this study, the pixels of any image character are divided

into columns and rows by groups of pixels and then the

compression process is performed by coding. The

compression performance will depend on the different font

type and give different size after compression.

3.1. Experiments of Character Encoding

In this article, from pixel groups of an image character in

columns and rows, the character is compressed by encoding as

described in Algorithm 1. Moreover, the compression of the

character depends on the type of fonts. In particular, different

fonts after compression will produce the different capacity. It

means that the storage space of the compressed character is

different.

Figure 4. Division of the pixel groups of the character image “I” for

encoding.

I-character compression: Assume that “I” character is

compressed using the proposed compression algorithm, the

first step is that pixels of the binary image need to be

rearranged in row and column as shown in Figure 4.

Figure 4 shows the “I” character shape for encoding using

the character compression algorithm. In particular, the

character “I” is divided into groups of pixels in row and

column such as 255, 30, 80, 195, 60. After dividing, the pixel

groups are arranged in sequence for each group for encoding

and then the compression process of the “I” character is

performed using Algorithm 1.

The character compression algorithm of “I” is worked out

by compressing the sequence of data according to the process

as shown in Algorithm 1, in which pixel groups of columns

and rows are allocated such as 250, 0, 0, 29, 0, 225, 254, 80, 0,

254, 110, 0, 29, 110, 225, 254, 190, 0, 0. Therefore, when

encoding the character “I”, the capacity of the compressed

character is 18 bytes and 1 byte is obtained for applying the

total number of columns. In addition, after compressing the “I”

character, the capacity of this character is 19 bytes using the

proposed algorithm. In particular, the “I” character is encoded

as follows:

250: the column number of the character “I” is

(80+30+80+60=250).

0, 0, 29: it means that the 0
th

 column is displayed from pixel

0 to 29.

0, 225, 254: the 0
th

 column is displayed from pixel 225 to

254.

80, 0, 254: the 80
th

 column is displayed from pixel 0 to 254.

110, 0, 29: it means that the 110
th

 column is displayed from

pixel 0 to 29.

110, 225, 254: similarly the 110
th

 column is displayed from

pixel 225 to 254.

190, 0, 0: the 190
th

 column is nothing to display.

The result is that the storage space rate of the character “I”

after compressing is saved about 99.76%.

L-character compression: When performing “L” character

compression, pixels are arranged as shown in Figure 5, in

which the character “L” is divided into pixel groups of 255, 30,

160, 225, 60 for encoding.

 American Journal of Electrical and Computer Engineering 2019; 3(2): 58-66 61

Figure 5. Division of the pixel groups of the character image “L” for

encoding.

Encoding for the “L” character compression is similarly

performed by dividing the image pixels into groups in rows

and columns as follows: 250, 0, 0, 254, 30, 225, 254, 190, 0, 0.

This encoding allows the “L” character to be compressed into

10 bytes, in which 9 bytes of data and 1 byte for determining

the total number of columns. The encoding process is

described as follows:

250: the total number of columns of the “L” character

(30+160+60=250).

0, 0, 254: the 0
th

 column is displayed from pixel 0 to 254.

30, 225, 254: the 30
th

 column is displayed from pixel 225 to

254.

160, 0, 0: the 160
th

 column is nothing to display.

The result of the storage space rate of the character “L” after

compressing is about 99.87%.

F-character compression: In similarity, in Figure 6,

F-character compression with dividing pixel groups is

performed as follows:

Figure 6. Division of the pixel groups of the character image “F” for

encoding.

The process of the “F” character compression is consists of

13 bytes, in which:

250: the total number of columns of the F character

(30+160+ 60=250).

0, 0, 254: the 0
th

 column is displayed from pixel 0 to 254.

30, 0, 29: the 30
th

 column is displayed from pixel 0 to 29.

30, 110, 139: the 30
th

 column is displayed from pixel 110 to

139.

160, 0, 0: the 160
th

 column is nothing to display.

The result is that the storage space rate of the character “F”

after compressing is about 99.84%.

Figure 7. Representation of the “L” character after compression.

Figure 7 shows the “L” character is compressed and its

capacity is reduced haft in size using the proposed encoding

algorithm based on the pixel groups of rows and columns

re-arranged.

Table 1 describes the compression results for different

characters in detail. For this compression algorithm, each

character produces a different compression ratio and it

depends on the complexity of each character. In addition,

experiments with the special characters will produce the low

compression ratio, particularly the ‘@’ character can produce

the lowest compression ratio with the compressed size of 3.11,

while the space ‘character has the highest compression ratio of

2656.33.

Table 1. Results of character images after compression.

Character S (bytes) CS (bytes) CR SCR (%)

B 9563 1069 8.95 88.82

E 9244 17 543.76 99.82

F 7969 13 613 99.84

H 7969 13 613 99.83

I 7969 19 419.42 99.76

L 7969 10 796.9 99.87

@ 7969 2566 3.11 67.8

Space 7969 3 2656.33 99.96

3.2. Experiments of Character Decoding

Figure 8. Representation of decompressing L character.

Figure 8 shows the process of decoding the “L” character.

In particular, the “L” character after encoding was decoded

with the sorted pixels in sequences such as 125, 0, 0, 127, 113,

62 Thanh-Hai Nguyen et al.: Pixel-based Character Image Compression for Data Transfer from

ARM Controller to FPGA System

127, 95, 0, 0. In similarity, characters of “I”, “F”, and other

ones when decoded can produce different pixel sequences.

The compression of image characters is to reduce the storage

capacity of memory for quickly editing texts and printing on

products.

3.3. Application of Character Compression

In our application, one printing system embedded between

one ARM microcontroller and one FPGA for printing

information on products, processing character compression

and transferring from the microcontroller to the FPGA are

described as follows:

Data transfer is duplex because both devices must always

transfer data to each other at the same time (the

microcontroller transfers data to the FPGA for printing. In

addition, the FPGA transfers to the microcontroller operating

system parameters such as: temperature, time, number of

products and others)

High speed data transfer to be able to respond well and do

not create time delay.

With the above requirements, the project chooses SPI

transmission standard as a method of communication between

the microcontroller and FPGA due to relation in a high-speed

synchronous duplex transmission standard that can be up to

30Mb. In addition, this application selected the UART

standard as an auxiliary communication gateway for the two

boards to make speed-up of transmission through two

independent channels. Figure 9 and Figure 10 describe two

circuit boards containing the two independent channels for

data transmission.

Figure 9. ARM microcontroller.

Figure 10. FPGA system.

(a) Printing installation at 300 dpi resolution.

(b) Printing logo and text.

(c) Printing QR code, expiry date and text.

Figure 11. Representation of information printed on products.

In this application, the microcontroller and FPGA play a

main role in the digital printer system for printing product

information in the industry. Moreover, the interface design and

character image compression processing are optimized for

transferring faster and controlling in real-time. In practice,

The printing system using the microcontroller and FPGA was

completely designed and printed on couch paper as shown in

Figure 11, in which product information were printed such as

logo, text with over 20 characters, QR code and others.

In practice, text fonts with bitmap format are applied in

almost all microcontroller systems for editing and displaying

contents. Using the bitmap fonts has advantages and

disadvantages as follows:

Advantages: Simple, easy to use and fast decoding.

Disadvantages: Large memory capacity is required to be

able to store texts in microcontroller systems. In particular, the

microcontrollers with flash memory of 1 Mega Byte (MB) can

only store a bitmap font (bmp) with height and width. In

addition, it is difficult to change the character size to be large

or small in each font size, so users have to create the own font

code table. This will consume memory resources of the system

and also spend a lot of processing time. Therefore, it is not

suitable for applications required real-time responses, such as

printing industrial products or other applications in industry.

From the proposed compression algorithm and the practical

results for compressing the characters “F”, “I” and “L” to be

 American Journal of Electrical and Computer Engineering 2019; 3(2): 58-66 63

able to print on the packaging products, the usefulness of this

algorithm through the compression ratio is very high. In

addition, this character image compression algorithm

illustrates that the ARM microcontroller systems connected to

FPGA for fast editing and printing product information such

as logos, barcodes, QR and texts.

4. Conclusion

The proposed compression algorithm in this article was

applied for ASCII font to reduce the size of image character

for saving memory capacity during the control system

operation. In particular, the compression process of one binary

image character was performed by encoding, in which the

character was calculated to divide the binary image character

into pixel groups in columns and rows. Thus, the decoding

process of the character was based on the encoding sequence

to re-build the character frame as the original character.

Therefore, the character compression algorithm reduced the

character capacity for storing memory spaces with the high

compression ratio. This compression algorithm was applied

for the microcontroller-FPGA system for printing information

on products with the high speed in real time.

Acknowledgements

This work is supported by Ho Chi Minh City University of

Technology and Education (HCMUTE) under Grant No.

T2019-48TD.

References

[1] Aurelle Tchagna Kouanou, Daniel Tchiotsop, Theophile
Fonzin Fozin, Bayangmbe Mounmo, René Tchinda,
"Real-Time Image Compression System Using an Embedded
Board," Science Journal of Circuits, Systems and Signal
Processing, vol. 7, no. 4, pp. 81-86, 2018.

[2] Ikerionwu Charles, Isonkobong Christopher Udousoro, “The
Application of Selective Image Compression Techniques,”
Software Engineering, vol. 6, no. 4, pp. 116-120, 2018.

[3] Ruchita K. Ingole, “Embedded Image Compression: A Review,”
International Journal of Data Science and Analysis, vol. 3, no. 1,
pp. 1-4, 2017.

[4] Syed Muhammad Arsalan Bashir, "Font Acknowledgment and
Character Extraction of Digital and Scanned Images,"
International Journal of Computer Applications, vol. 70, no. 8,
pp. 1-10, 2013.

[5] Jahanzeb Ahmad, Mansoor Ebrahim, "FPGA based
implementation of Baseline JPEG decoder," International
Journal of Electrical & Computer Sciences IJECS, vol. 9, no. 9,
pp. 371-377, 2009.

[6] Yeli Li, Likun Lu, Binbin Yan, "The design and
implementation of high-speed data interface based on Ink-jet
printing system," in Proceedings of the 2015 International
Symposium on Computers & Informatics, pp. 1725- 1732,
2015.

[7] M. Akil, L. Perroton, T. Grandpierre, "FPGA-based
architecture for hardware compression/decompression of wide
format images," Journal of Real-Time Image Processing, vol. 1,
pp. 163-170, 2006.

[8] S. Banerjee and A. Kuchibhotla, "Real-time optimal-memory
image rotation for embedded systems," 16th IEEE International
Conference on Image Processing (ICIP), pp. 3277-3280, 2009.

[9] Samrin Shaikh, Shashank Pujari, "Migration from microcontroller
to FPGA based SoPC design: Case study: LMS adaptive filter
design on Xilinx Zynq FPGA with embedded ARM controller,"
International Conference on Automatic Control and Dynamic
Optimization Techniques (ICACDOT), pp. 129-134, 2016.

[10] Paulo Garcia, Deepayan Bhowmik, Robert Stewart, Greg
Michaelson and Andrew Wallace, "Optimized Memory
Allocation and Power Minimization for FPGA-Based Image
Processing," Journal of Imaging, vol. 5, no. 7, pp. 27-49, 2019.

[11] I. Shcherbakov, C. Weis, and N. Wehn, "A high-performance
FPGA-based implementation of the LZSS compression
algorithm," in Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), IEEE 26th International,
pp. 449-453, 2012.

[12] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, "A scalable
high-bandwidth architecture for lossless compression on
FPGAs," in Field-Programmable Custom Computing
Machines (FCCM), IEEE 23rd Annual International
Symposium on, pp. 52-59, 2015.

[13] X. Zhou, Y. Ito, and K. Nakano, "An efficient implementation
of LZW decompression in the FPGA," in Parallel and
Distributed Processing Symposium Workshops, IEEE
International, pp. 599-607, 2016.

[14] T. Mitra and T.-c. Chiueh, "An FPGA implementation of
triangle mesh decompression," Proceedings 10th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines, Napa, CA, USA, pp. 22-31, 2002.

[15] M. P. Sarkar, P. Indurkar, and R. Kadam, "An optimum
algorithm for data compression using VHDL," Int. Res. J. Eng.
Technol, vol. 2, pp. 572-576, 2015.

[16] P. M. Sandeep and C. S. Manikandababu, "Compression and
decompression of FPGA bitstreams," International Conference
on Computer Communication and Informatics, Coimbatore, pp.
1-4, 2013.

[17] P. Hemnath and V. Prabhu, "Compression of FPGA bitstreams
using improved RLE algorithm," in Information
Communication and Embedded Systems (ICICES),
International Conference on, pp. 834-839, 2013.

[18] Z. Li and S. Hauck, "Configuration compression for virtex
FPGAs," in Field-Programmable Custom Computing Machines,
The 9th Annual IEEE Symposium on, pp. 147-159, 2001.

[19] S. Rigler, "FPGA-Based Lossless Data Compression Using
GNU Zip," University of Waterloo, 2007.

[20] I. Suarjaya, "A new algorithm for data compression
optimization," International Journal of Advanced Computer
Science and Applications, vol. 3, no. 8, pp. 14-17, 2012.

[21] M. Azad, A. Kalam, R. Sharmeen, S. Ahmad, and S.
Kamruzzaman, "An efficient technique for text compression,"
The 1st International Conference on Information Management
and Business (IMB2005), pp. 467-473, 2010.

64 Thanh-Hai Nguyen et al.: Pixel-based Character Image Compression for Data Transfer from

ARM Controller to FPGA System

[22] R. Gallager, "Variations on a theme by Huffman," IEEE
Transactions on Information Theory, vol. 24, no. 6, pp. 668-674,
1978.

[23] N. Faller, "An adaptive system for data compression," in
Record of the 7th Asilomar Conference on Circuits, Systems
and Computers, pp. 593-597, 1973.

[24] D. E. Knuth, "Dynamic huffman coding," Journal of algorithms,
vol. 6, no. 2, pp. 163-180, 1985.

[25] J. S. Vitter, "Design and analysis of dynamic Huffman codes,"
Journal of the ACM (JACM), vol. 34, no. 4, pp. 825-845, 1987.

[26] N. Ganvir, A. Jadhav, and P. Scoe, "Explore the Performance of
the ARM Processor Using JPEG," International Journal on
Computer Science and Engineering, vol. 2, no. 1, pp. 12-17, 2010.

[27] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, "Improving code
density using compression techniques," in Proceedings of the
30th Annual international symposium on Microarchitecture
ACM/IEEE, pp. 194-203, 1997.

